REPORT NUMBER: 222-MGA-2007-005

SAFETY COMPLIANCE TESTING FOR FMVSS NO. 222 SCHOOL BUS PASSENGER SEATING AND CRASH PROTECTION

US BUS CORPORATION 2006 US BUS SCHOOL BUS NHTSA NO.: C60900

PREPARED BY: MGA RESEARCH CORPORATION 5000 WARREN ROAD BURLINGTON, WI 53105

FINAL REPORT DATE: JUNE 7, 2007

FINAL REPORT

PREPARED FOR: U.S. DEPARTMENT OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION ENFORCEMENT OFFICE OF VEHICLE SAFETY COMPLIANCE MAILCODE: NVS-220 400 SEVENTH STREET, SW, ROOM 6111 WASHINGTON, D.C. 20590 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared by:	James Hansen, Project Engineer	Date: June 7, 2007
Reviewed by:	Hichael Janovicz, Program Manager	Date: June 7, 2007

FINAL REPORT ACCEPTED BY:

nom of Acceptance

Technical Report Documentation Page

1. Report No. 222-MGA-2007-005	2. Government Accession No.	3. Recipient's Catalog	g No.
4. Title and Subtitle Final Report of FMVSS 222 Compliance Testing of 2006 US BUS School Bus		5. Report Date June 7, 2007 6. Performing Organi MGA	zation Code
7. Author(s) James Hansen, Pr Michael Janovicz.	oject Engineer Program Manager	8. Performing Organi 222-MGA-2007-00	zation Report No. 15
9. Performing Organization Name MGA Research Corporation	e and Address	10. Work Unit No.	
5000 Warren Road Burlington, WI 53105		11. Contract or Grant DTNH22-02-D-010	t No.)57
12. Sponsoring Agency Name at U.S. Department of Transporta National Highway Traffic Safet Enforcement	nd Address ation y Administration	13. Type of Report an Covered Final Report 10/31/2006 to 6/07/	nd Period ort /2007
Office of Vehicle Safety Comp Mail Code: NVS-220 400 Seventh St., S.W. Room 6 Washington, D.C. 20590	liance	14. Sponsoring Agen NVS-220	cy Code
15. Supplementary Notes		l	
 16. Abstract Compliance tests were conducted on the subject 2006 US BUS School Bus, NHTSA No. C60900, in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP-222-03 for the determination of FMVSS 222 compliance. Test Failure: See Section 2, Test Data Summary. 			
17. Key Words Compliance Testing Safety Engineering FMVSS 222		18. Distribution S Copies of this rep from: NHTSA, Technic Services (TIS), F (NPO-411) 400 Seventh Stru Washington, D.C	ctatement bort are available cal Information Room 2334 eet, S.W. C. 20590
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 103	22. Price

Form DOT F1700.7 (8-72)

Section		Page No
1	Purpose of Compliance Test	1
2	Test Data Summary	2
3	Compliance Test Data	7
	Data Sheet 1 - Seat to Seat/Barrier Spacing	8
	Data Sheet 2 - Seat Back Height & Front Surface Area Test	9
	Data Sheet 3 - Seat Back Force Deflection Test - Forward	11
	Data Sheet 4 - Seat Back Force Deflection Test - Rearward	15
	Data Sheet 5 - Restraining Barrier Position and Projected Rear Surface Area	19
	Data Sheet 6 - Head Form Impact Contact Area and Energy Requirements	23
	Data Sheet 7 - Knee Form Impact Test	27
	Data Sheet 8 - Seat Belt Assembly Anchorages	29
4	TP-222-03 (Appendix B FMVSS 208, Occupant Crash Protection for Class	20
	2 School Buses)	30
	Data Sheet B1 - Seat Belt Check	30
	Data Sheet B2 - Seat Belt Warning System Check	33
5	Instrumentation and Equipment List	34
6	Photographs	35
7	Test Plots	56
8	Welt Contact Points	86
9	Bus Floor Plan	97
10	Laboratory Notice of Test Failure	98

SECTION 1 PURPOSE OF COMPLIANCE TEST

Tests were conducted on a 2006 US BUS School Bus, NHTSA No. C60900, in accordance with the specifications of the Office of Vehicle Safety Compliance (OVSC) Test Procedures TP-222-03 to determine compliance to the requirements of Federal Motor Vehicle Safety Standards (FMVSS) 222, "School Bus Passenger Seating and Crash Protection".

This program is sponsored by the National Highway Traffic Safety Administration (NHTSA), under Contract No. DTNH22-02-D-01057.

SECTION 2 TEST DATA SUMMARY

The passenger seating and crash protection tests were conducted during October 2006 through March 2007. All tests were conducted by MGA Research Corporation at the Wisconsin Operations. The test vehicle, 2006 US BUS School Bus, NHTSA No. C60900, did not appear to meet all the requirements of FMVSS 222. The test failures are listed below.

Failure 1

FMVSS Requirement: Paragraph S5.1.4 (c): *Seat performance rearward*, "The seat shall not deflect by an amount such that any part of the seat moves to within 102 mm of any part of another passenger seat in its originally installed position."

During the rearward deflection test, the S5 seat back moved to within 102 mm of the seat located directly behind the test seat prior to reaching the energy absorption required by S5.1.4.2. A repeat test on a new seat was performed while limiting the travel of the loading bar. The seat back still moved to within 102 mm of the seat located directly behind the test seat well before the energy absorption requirement was met.

Failure 2

FMVSS Requirement: <u>Paragraph S.5.1</u>: "Apply the force at the onset rate of not more than 22,241 N per second. Attain the 22,241 N force in not more than 30 seconds and maintain it for 10 seconds."

The force application, for the seat belt assembly anchorages, in the S5 location did not reach the specified force before the failure of the floor and wall mount anchor structure. The force requirement as specified in 49 CFR 571.210 is 22,000 N. The actual force reached 14,602 N before failure of the floor and wall mount anchor structure.

LINEAR AND AREA MEASUREMENTS

Seat to seat/barrier spacing was checked on all seats and found to be 610 mm or less as shown on Data Sheet 1.

The seat back height and front surface area of Seat Nos. 1 and 7 were measured in accordance with Section 12.1 of OVSC TP-222-03. As shown in Data Sheet 2 for Seat Nos. 1 and 7, the seat back area is greater than ninety percent of the seat bench width multiplied by 508.

SECTION 2 (CONTINUED) TEST DATA SUMMARY

Restraining barriers positions and projected rear surface areas of Barrier Nos. 1 and 7 were measured in accordance with OVSC TP-222-03. The projected perimeter of seats S1 and S7 do not fall completely within the perimeter of the B1 and B7 restraining barrier, respectively. These measurements were recorded for indicant purposes as Paragraphs S5.2, S5.2.1, S5.2.2, and S5.2.3 are not required for Class 2 school buses.

SEAT BACK FORCE/DEFLECTION TEST - FORWARD

Seat Nos. 6 and 7 were tested in accordance with Section 12.4 of OVSC TP-222-03. Seat bench width was determined to be 895 mm for S6 and 900 mm for S7. "W" was calculated to be 2 for S6 and S7. The seating reference point (SRP) was 482 mm above the bus floor. The deflection of the seat back at conclusion of lower loading bar loading at 1557 W N load was 60.8 mm for S6 and 54.4 mm for S7. The allowable maximum deflection without moving the seat back to within 102 mm of another seat or restraining barrier was 356 mm. The stroke rate of the upper loading bar was determined by the test engineer to be 14.4 mm/sec. The location of the upper loading bar was 406 mm above the SRP. The tests were stopped when the maximum deflection of 356 mm was reached. The minimum required area under the force versus deflection curve of the upper loading bar was 452 W or 904 joules for both S6 and S7. As shown on Data Sheet No. 3, Seat Nos. 6 and 7 met the force deflection forward requirements. See Plots 1, 2, 3, and 4.

SEAT BACK FORCE/DEFLECTION TEST - REARWARD

Seat Nos. 5 and 4, tested in the seat 5 location were tested in accordance with Section 12.4 of OVSC TP-222-03. Seat bench width was determined to be 895 mm for S5 and 898 mm for S4. "W" was calculated to be 2 for both S4 and S5. The seating reference point (SRP) was 482 mm above the bus floor. The allowable maximum deflection without moving the seat back to within 102 mm of another seat or restraining barrier was 254 mm. The stroke rate of the upper loading bar was determined by the test engineer to be 14.4 mm/sec for both S4 and S5. The location of the loading bar was 343 mm above the SRP for both seats. The test was stopped when the maximum deflection of the seat back of 254 mm was achieved for S5. The test was stopped when the maximum deflection of the seat back moved within 102 mm of another seat for S4.

SECTION 2 (CONTINUED) TEST DATA SUMMARY

The area under the force versus deflection curve of the loading bar was 858 joules for S5 and 674 joules for S4. The minimum required area under the force versus deflection curve of the loading bar was 316 W or 632 joules for both S4 and S5.

KNEE FORM IMPACT ZONE TESTS

Seat No. S2 was tested in accordance with Section 12.7 of OVSC TP-222-03. The mass of the knee form was 4.53 kg. All knee form contact area criteria and impact energy criteria were met for the seat.

HEAD FORM IMPACT ZONE TESTS

Seat No. S2 was tested in accordance with Section 12.6 of OVSC TP-222-03. The mass of the head form was 5.21 kg. All head form contact area criteria was met for the seat. The impact energy criteria and head injury criteria for all impact locations were met.

SEAT BELT ANCHORAGES

Seat belt anchorage for S3, in location S4, was tested in accordance with Appendix A of OVSC TP-222-03. Seat belt anchorages and specially made high strength webbing straps were used to conduct the test. The seat mounting failed before the required load of 22,000 N per belt was achieved. The force application, for the seat belt assembly anchorages, in the S5 location did not reach the specified force before the failure of the floor and wall mount anchor structure. The force requirement as specified in 49 CFR 571.210 is 22,000 N. The actual force reached 14,602 N before failure of the floor and wall mount anchor structure. See Plot 7.

ADMINISTRATIVE DATA SHEET

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	9/21/2006

INCOMPLETE VEHICLE (IF APPLICABLE)

Manufacturer:	GENERAL MOTORS CORPORATION
Model:	CG33503
VIN:	1GBHG31V561226021
Build Date:	03/06
Certification Date:	

COMPLETED VEHICLE (SCHOOL BUS)

	· · · · · · · · · · · · · · · · · · ·
Manufacturer:	US BUS CORPORATION
Make/Model:	GM / US BUS
VIN:	1GBHG31V561226021
NHTSA No.:	C60900
Color:	Yellow
GVWR:	4,536 kg / 10,000 lbs
Build Date:	08/06
Certification Date:	08/06

DATES 9/21/2006 Vehicle Receipt: 10/31/2006 Start of Compliance Test: 4/18/2007 Completion of Compliance Test:

COMPLIANCE TEST:

All tests were performed in accordance with the references outlined in TP-222-03.

Recorded By:__

Hichal Janois Approved By:_

DATE: 9/21/2006

GENERAL TEST DATA SHEET

Test Vehicle: 2006 US BUS SCHOOL BUS NHTSA No.: **C60900** MGA RESEARCH CORPORATION Test Lab: Test Date:

10/31/2006

SCHOOL BUS IDENTIFICATION

Model Year/Mfr./Make/Model:	2006 / US BUS
Passenger Capacity:	(1 Driver, 14 Passengers)
NHTSA No.:	C60900
VIN:	1GBHG31V561226021
Conventional or Forward Control:	Conventional
GVWR (Certification Label) FRONT:	1,860 kg / 4,100 lbs
GVWR (Certification Label) REAR:	3,402 kg / 7,500 lbs
GVWR (Certification Label) TOTAL:	4,536 kg / 10,000 lbs

TEST CONDITIONS

Date(s) of Test:	10/31/06 – 4/18/07
Ambient Temperature (°C):	21
Required Temperature Range:	0°C to 32°C

SEAT IDENTIFICATION

Seat Manufacturer:	FREEDMAN
Model Name & Number:	
Description of Seats:	Seat frames are constructed of 25.4 mm round welded steel tubing. The seat back has .68 mm by 25.4 mm strapping welded between the tubing and is covered with 45 mm poly foam on the back surface and 45 mm molded Styrofoam blocks inset into the outboard knee impact areas. The seat cushion is non-removable and designed into the seat. The seat back and seat cushion are wrapped with .58 mm vinyl.

SECTION 3 COMPLIANCE TEST DATA

The following data sheets document the results of testing on the 2006 US BUS School Bus, NHTSA No. C60900.

SEAT TO SEAT/BARRIER SPACING

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	10/31/2006

SEAT NUMBER	MEASUREMENT OF SPACING FROM SRP FORWARD TO SEAT/BARIER (mm)	REQMT <u><</u> 610 MM (< 24") CLASS 1 BUSES ONLY PASS/FAIL
1	494	PASS
2	552	PASS
3	542	PASS
4	476	PASS
5	511	PASS
6	534	PASS
7	536	PASS

COMMENTS: NONE

Approved By: Michael Janon

SEAT BACK HEIGHT & FRONT SURFACE AREA TEST

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	10/31/2006

SEAT NUMBER: S1

		PASS/FAIL
1.	Is the seat back height at least 508 mm vertically above the SRP? (S5.1.2)	PASS

- Measure the seat back front projected area in a vertical plane bound by horizontal planes through the SRP and 508 mm above the SRP according to the following procedure:
 Width, a = 380 mm; Width, b = 438 mm; Height, c = 218 mm; Height, d = 290 mm Width, e = 380 mm; Height, f = 218 mm; Height, g = 290 mm; Width, h = 450 mm Area = (½ (a+b) x c) + (d x b) = 216,182 mm² = Areaⁱ Area = (½ (e+h) x f) + (h x g) = 220,970 mm² = Area^o Areaⁱ + Area^o = 437,152 mm²
 Measure the seat cushion width W1 = 900 mm
- 3. Measure the seat cushion width W1 = 900 mm If the seat cushion is not rectangular, measure the cushion at the forward most edge and the rearward most edge, average the widths, and use the average width as W1.

4. Calculate the following: $0.9 \times W1 \times 508 \text{ mm} = 411,480 \text{ mm}^2$

		PASS/FAIL
5.	Is item 2 greater than item 4? (S5.1.2)	PASS

Comments:	None
Recorded By:_	Jose fre
Approved By:_	Hichael Janoig

DATA SHEET 2 (CONTINUED)

SEAT BACK HEIGHT & FRONT SURFACE AREA TEST

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **10/31/2006**

SEAT NUMBER: S7

		PASS/FAIL
1.	Is the seat back height at least 508 mm vertically above the SRP? (S5.1.2)	PASS

 Measure the seat back front projected area in a vertical plane bound by horizontal planes through the SRP and 508 mm above the SRP according to the following procedure:

Width, a = 380 mm; Width, b = 445 mm; Height, c = 198 mm; Height, d = 310 mm Width, e = 382 mm; Height, f = 198 mm; Height, g = 310 mm; Width, h = 440 mm Area = $(\frac{1}{2} (a+b) x c) + (d x b) = 219,625 mm^2 = Area^i$ Area = $(\frac{1}{2} (e+h) x f) + (h x g) = 217,778 mm^2 = Area^o$

 $Area^{i} + Area^{o} = 437.403 \text{ mm}^{2}$

- Measure the seat cushion width W1 = 900 mm
 If the seat cushion is not rectangular, measure the cushion at the forward most edge and the rearward most edge, average the widths, and use the average width as W1.
- 4. Calculate the following: $0.9 \times W1 \times 508 \text{ mm} = 411,480 \text{ mm}^2$

		PASS/FAIL
5.	Is item 2 greater than item 4? (S5.1.2)	PASS

Recorded By:_	Ja	fr	

None

Comments:

Approved By: Hichal Janoc

SEAT BACK FORCE DEFLECTION TEST - FORWARD

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:11/15/2006

SEAT NUMBER: S6

1. Seat Bench Width = 895 mm

W = (Seat Bench Width)/381 mm (round to nearest whole number) = (2) Seat Reference Point (SRP) location is: (Description of location as supplied by the COTR): 482 mm Above Floor, 56 mm forward from the rear seat to frame mounting bolt.

- Location of lower loading bar is 0 mm above the SRP. (Requirement: Between 102 mm above and 102 mm below the SRP) (S5.1.3.1)
 Length of lower loading bar = 801 mm
 Seat Back width at SRP = 900 mm
- 3. Include x-y plot of Force vs. Time for the lower loading bar.
- Deflection of the seat back at conclusion of lower bar loading (1557 W Newtons position) = 60.8 mm, at start of upper bar loading 60.8 mm, at end of upper bar loading 60.8 mm.
- 5. Maximum deflection allowed without moving the seat back to within 102 mm of another seat or restraining barrier = 356 mm (must be 356 mm of less) (S5.1.3)
- 6. Seat back movement rate selected by the test engineer = 14.4 mm/sec
- Location of upper loading bar is in a horizontal plane 406 mm above the SRP. (Requirement: 406 mm) (S5.1.3.3). Length of upper loading bar = 763 mm. Width of seat back at 406 mm above SRP = 865 mm.
- 8. Reason for stopping seat back deflection:
 - ____ Reached deflection determined in Item 6 above (if less than 356 mm)
 - <u>X</u> Reached 356 mm maximum allowed deflection (Actual deflection was 361 mm) Separation was about to occur
- Include the x-y plot of force vs. deflection for the upper loading bar with boundaries of Figure 14 (OVSC TP-222-3) superimposed.

DATA SHEET 3 (CONTINUED)

SEAT BACK FORCE DEFLECTION TEST - FORWARD

		PASS/FAIL
10.	Is the seat in its final deflected position within 102 mm of the next seat or barrier?	PASS

		PASS/FAIL
11.	Does the forward force vs. deflection trace of the seat back lie within the corridor? (S5.1.3)	PASS

Include a deflection vs. time plot for the upper loading bar. 12.

- The area within the force vs. deflection curve = 1,455 joules 13.
- 452W = 904 joules (S5.1.3.4) 14.

		PASS/FAIL
15.	Is item 13 greater than or equal to item 14? (S5.1.3.4)	PASS

Comments: None

Sichal Janoc Recorded By:

Approved By:

DATE: 11/15/2006

DATA SHEET 3 (CONTINUED) SEAT BACK FORCE DEFLECTION TEST - FORWARD

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:11/15/2006

SEAT NUMBER: S7

1. Seat Bench Width = 900 mm

W = (Seat Bench Width)/381 mm (round to nearest whole number) = (2) Seat Reference Point (SRP) location is: (Description of location as supplied by the COTR: 482 mm Above Floor, 56 mm forward from the rear seat to frame mounting bolt.

- Location of lower loading bar is 0 mm above the SRP.
 (Requirement: Between 102 mm above and 102 mm below the SRP) (S5.1.3.1)
 Length of lower loading bar = 801 mm
 Seat Back width at SRP = 900 mm
- 3. Include x-y plot of Force vs. Time for the lower loading bar.
- Deflection of the seat back at conclusion of lower bar loading (1557 W Newtons position) = 54.4 mm, at start of upper bar loading 54.4 mm, at end of upper bar loading 54.4 mm.
- 5. Maximum deflection allowed without moving the seat back to within 102 mm of another seat or restraining barrier = 356 mm (must be 356 mm of less) (S5.1.3)
- 6. Seat back movement rate selected by the test engineer = 14.4 mm/sec
- Location of upper loading bar is in a horizontal plane 406 mm above the SRP. (Requirement: 406 mm) (S5.1.3.3). Length of upper loading bar = 763 mm. Width of seat back at 406 mm above SRP = 865 mm.
- 8. Reason for stopping seat back deflection:
 - ____ Reached deflection determined in Item 6 above (if less than 356 mm)
 - X Reached 356 mm maximum allowed deflection (Actual deflection was 356 mm)
 Separation was about to occur
- 9. Include the x-y plot of force vs. deflection for the upper loading bar with boundaries of Figure 14 (OVSC TP-222-3) superimposed.

DATA SHEET 3 (CONTINUED)

SEAT BACK FORCE DEFLECTION TEST - FORWARD

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	11/15/2006

		PASS/FAIL
10.	Is the seat in its final deflected position within 102 mm of the next seat or barrier?	PASS

		PASS/FAIL
11	Does the forward force vs. deflection trace of the seat back lie within the corridor? (S5.1.3)	PASS

Include a deflection vs. time plot for the upper loading bar. 12.

- The area within the force vs. deflection curve = 1,258 joules 13.
- 14. 452W = 904 joules (S5.1.3.4)

		PASS/FAIL
15.	Is item 13 greater than or equal to item 14? (S5.1.3.4)	PASS

Comments: None

Hichal Janon Recorded By:_____

Approved By:_

DATE: 11/15/2006

SEAT BACK FORCE DEFLECTION TEST – REARWARD

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:11/16/2006

SEAT NUMBER: S5

- Seat Bench Width = 895 mm
 W = (Seat Bench Width)/381 mm (round to nearest whole number) = (2)
- Location of the loading bar is in a horizontal plane 343 mm above the SRP of the test seat. (Requirement: 343 mm above the SRP) (S5.1.4.1)
 Length of loading bar = 762 mm

Width of seat back at 343 mm above SRP = 868 mm

- 3. Deflection of seat back at 222 N preload = 19 mm
- 4. Maximum deflection allowed without moving the seat back to within 102 mm of another seat = approximately 175 mm (maximum allowed = 254 mm) (S5.1.4)
- 5. Seat back movement rate selected by the test engineer = 14.4 mm/sec
- 6. Reason for stopping deflection:
 - ____ Reached deflection determined in Item 4 above (if less than 254 mm)
 - X Reached 254 mm maximum allowed deflection (Actual deflection was 256 mm) Separation was about to occur
- Include the x-y plot of force vs. deflection for the loading bar with boundaries of Figure 18 (OVSC TP-222-3) superimposed.

		PASS/FAIL
8.	Does the force vs. deflection plot lie within the boundaries of Figure 18 (OVSC TP-222-03)?	PASS

- 9. Include a deflection vs. time plot for the upper loading bar.
- 10. 316W = 632 joules
- 11. The area within the force vs. deflection curve = 858 joules

DATA SHEET 4 (CONTINUED)

SEAT BACK FORCE DEFLECTION TEST - REARWARD

Test Vehicle: 2006 US BUS SCHOOL BUS NHTSA No.: C60900 Test Lab: MGA RESEARCH CORPORATION Test Date: 11/16/2006

		PASS/FAIL
		NA
12.	Is item 11 greater than or equal to item 10? (S5.1.4.2)	(See Comments)

Comments: This seat failed to meet the requirements of S5.1.4.2. The seat back moved to within 102 mm of the seat located directly behind the test seat when the loading bar reached approximately 175 mm of travel. The total energy expended by the loading bar at 175 mm was approximately 577 joules, which is below the 632 joules of energy absorption required by S5.1.4.2. When considering energy returned due to seat recoil, the total energy absorbed by the seat back is less than 577 joules.

Recorded By:_

Lichal Janois Approved By:

DATE: 11/16/2006

DATA SHEET 4 (CONTINUED)

SEAT BACK FORCE DEFLECTION TEST – REARWARD

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:11/16/2006

SEAT NUMBER: S4, tested in the S5 location

1. Seat Bench Width = 898 mm

W = (Seat Bench Width)/381 mm (round to nearest whole number) = (2)

- Location of the loading bar is in a horizontal plane 343 mm above the SRP of the test seat. (Requirement: 343 mm above the SRP) (S5.1.4.1)
 Length of loading bar = 762 mm
 Width of seat back at 343 mm above SRP = 870 mm
- 3. Deflection of seat back at 222 N preload = 16 mm
- 4. Maximum deflection allowed without moving the seat back to within 102 mm of another seat = approximately 163 mm (maximum allowed = 254 mm) (S5.1.4)
- 5. Seat back movement rate selected by the test engineer = 14.4 mm/sec
- 6. Reason for stopping deflection:
 - <u>X</u> Reached deflection determined in Item 4 above (if less than 254 mm)
 - ____ Reached 254 mm maximum allowed deflection
 - ____ Separation was about to occur
- Include the x-y plot of force vs. deflection for the loading bar with boundaries of Figure 18 (OVSC TP-222-3) superimposed.

		PASS/FAIL
8.	Does the force vs. deflection plot lie within the boundaries of Figure 18 (OVSC TP-222-03)?	PASS

- 9. Include a deflection vs. time plot for the upper loading bar.
- 10. 316W = 632 joules
- 11. The area within the force vs. deflection curve = 675 joules

DATA SHEET 4 (CONTINUED)

SEAT BACK FORCE DEFLECTION TEST – REARWARD

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:11/16/2006

		PASS/FAIL
		NA
12.	Is item 11 greater than or equal to item 10? (S5.1.4.2)	(See Comments)

Comments: This test was performed to verify the results of the S5 rearward deflection test. This seat also failed to meet the requirements of S5.1.4.2. The seat back moved to within 102 mm of the seat located directly behind the test seat when the loading bar reached approximately 163 mm of travel. The total energy expended by the loading bar at 163 mm was approximately 517 joules, which is below the 632 joules of energy absorption required by S5.1.4.2. When considering energy returned due to seat recoil, the total energy absorbed by the seat back is less than 517 joules.

Recorded By:

Lichal Sanoe Approved By:

DATE: 11/16/2006

RESTRAINING BARRIER POSITION AND PROJECTED REAR SURFACE AREA (NOT REQUIRED FOR CLASS 2 SCHOOL BUSES)

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

 NHTSA No.:
 C60900

 Test Date:
 10/31/2006

SEAT NUMBER: B1

 Measure distance T from SRP of seat immediately aft of barrier in a horizontal longitudinal line forward to barrier. T= 494 mm.

		PASS/FAIL
2.	Is distance T equal to or less than 610 mm? (S5.2)	PASS

3. Measure distance D at top (t) and bottom (b) of barrier.

 $D_t = 80 \text{ mm}$ $D_b = 30 \text{ mm}$

4. Measure distance C at top (t) and bottom (b) of seat.

C_t = 96 mm

C_b = 60 mm

		PASS/FAIL
5.	Is D _t equal to or less than C _t ?	PASS

		PASS/FAIL
6.	Is D_b equal to or less than C_b ?	PASS

7. Measure distance E at top of barrier and bottom of barrier.

 $E_t = 756 \text{ mm}$ $E_b = 889 \text{ mm}$

8. Measure distance A at top of seat back and bottom of seat.

 $A_t = 805 \text{ mm}$ $A_b = 889 \text{ mm}$

		PASS/FAIL
9.	Is distance $E_t + D_t$ equal to or greater than distance $A_t + C_t$?	FAIL

		PASS/FAIL
10.	Is distance $E_b + D_b$ equal to or greater than distance $A_b + C_b$	FAIL

11. Measure distance U at inboard (i) and outboard (o) side of barrier.

U_i = 385 mm U_o = 368 mm

12. Measure distance V at inboard (i) and outboard (o) sides of seat.

V_i = 310 mm V_o = 310 mm

DATA SHEET 5 (CONTINUED)

RESTRAINING BARRIER POSITION AND PROJECTED REAR SURFACE AREA (NOT REQUIRED FOR CLASS 2 SCHOOL BUSES)

		PASS/FAIL
13.	Is U _i equal to or less than V _i ?	FAIL

		PASS/FAIL
14.	Is U_o equal to or less than V_o ?	FAIL

15. Measure distance S at inboard (I) and outboard (o) side of barrier.

S_o = 745 mm S_i = 738 mm

16. Measure distance W at inboard (i) and outboard (o) sides of seat.

$W_i = 770 \text{ mm}$ $W_o =$

		PASS/FAIL
17.	Is $S_i + U_i$ equal to or greater than $W_i + V_i$?	PASS

		PASS/FAIL
18.	Is $S_o + U_o$ equal to or greater than $W_o + V_o$?	PASS

Compute area (W x A) = $654,308 \text{ mm}^2$ 19.

Compute area (E x S) = $609,884 \text{ mm}^2$ 20.

		PASS/FAIL
21.	Is (W x A) equal to or less than (E x S)?	FAIL

Comments: None

Hichael Janon Recorded By:

Approved By:_

DATA SHEET 5 (CONTINUED)

RESTRAINING BARRIER POSITION AND PROJECTED REAR SURFACE AREA (NOT REQUIRED FOR CLASS 2 SCHOOL BUSES)

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:10/31/2006

SEAT NUMBER: B7

1. Measure distance T from SRP of seat immediately aft of barrier in a horizontal longitudinal line forward to barrier. T= 536 mm.

			PASS/FAIL
ĺ	2.	Is distance T equal to or less than 610 mm? (S5.2)	PASS

3. Measure distance D at top (t) and bottom (b) of barrier.

 $D_t = 85 \text{ mm}$ $D_b = 25 \text{ mm}$

4. Measure distance C at top (t) and bottom (b) of seat.

C_t = 90 mm

C_b = 60 mm

		PASS/FAIL
5.	Is D _t equal to or less than C _t ?	PASS

		PASS/FAIL
6.	Is D_b equal to or less than C_b ?	PASS

7. Measure distance E at top of barrier and bottom of barrier.

 $E_t = 765 \text{ mm}$ $E_b = 895 \text{ mm}$

8. Measure distance A at top of seat back and bottom of seat.

 $A_t = 835 \text{ mm}$ $A_b = 895 \text{ mm}$

		PASS/FAIL
9.	Is distance $E_t + D_t$ equal to or greater than distance $A_t + C_t$?	FAIL

		PASS/FAIL
10.	Is distance $E_b + D_b$ equal to or greater than distance $A_b + C_b$	FAIL

11. Measure distance U at inboard (i) and outboard (o) side of barrier.

U_i = 390 mm U_o = 360 mm

12. Measure distance V at inboard (i) and outboard (o) sides of seat.

 $V_i = 305 \text{ mm}$ $V_o = 305 \text{ mm}$

DATA SHEET 5 (CONTINUED)

RESTRAINING BARRIER POSITION AND PROJECTED REAR SURFACE AREA (NOT REQUIRED FOR CLASS 2 SCHOOL BUSES)

		PASS/FAIL
13.	Is U _i equal to or less than V _i ?	FAIL

		PASS/FAIL
14.	Is U_o equal to or less than V_o ?	FAIL

15. Measure distance S at inboard (I) and outboard (o) side of barrier.

S_i = 743 mm S_o = 746 mm

16. Measure distance W at inboard (i) and outboard (o) sides of seat.

W _i = 775 mm	W _o = 775 mm

		PASS/FAIL
17.	Is $S_i + U_i$ equal to or greater than $W_i + V_i$?	PASS

		PASS/FAIL
18.	Is $S_o + U_o$ equal to or greater than $W_o + V_o$?	PASS

19. Compute area (W x A) = $670,375 \text{ mm}^2$

20. Compute area (E x S) = $617,935 \text{ mm}^2$

		PASS/FAIL
21.	Is (W x A) equal to or less than (E x S)?	FAIL

Comments: None

Michael Janoc Recorded By: Approved By:____

HEAD FORM IMPACT CONTACT AREA AND ENERGY REQUIREMENTS

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:1/04/2007

SEAT NUMBER: S2

- 1. Locate x-y reference point on sketch above for head form impact locations. (Label the positive and negative directions, if applicable)
- 2. Identify head form impact location on sketch by placing H1, H2, H3, H4, H5, H6, and H7 in the appropriate location.
- 3. Define and mark on graphic above, the plane of reference for head form impact angle:
 - 0° = Parallel With Floor, (+) is Up, (-) is Down
 - X = From Inboard Edge of Seat
 - Y = Measured Vertically from the SRP

DATA SHEET 6 (CONTINUED)

HEAD FORM IMPACT CONTACT AREA AND ENERGY REQUIREMENTS

(1)	(2)			(3)	(4)*	(5)	(6)	(7)
Head	Head Location (a)		Speed Trap	Derived	Contact	CA <u>></u> 19	35 mm ²	
Impact	Х	Y	Angle	Impact	Velocity	Area (CA)	Yes-	No-
& Test #				Velocity** mps	mps	mm²	Pass	Fail
H1	742	470	0	1.57	1.49	6,640	PASS	
H2	641	470	0	1.57	1.50	6,310	PASS	
H3	541	470	0	1.57	1.38	5,960	PASS	
H4	370	470	0	1.56	1.60	5,780	PASS	
H5	742	365	0	1.55	2.11	6,930	PASS	
H6	641	365	0	1.56	1.40	6,730	PASS	
H7	541	365	0	1.55	2.00	6,700	PASS	

4. Complete the following table:

* Contact Velocity from Item 7 below

** Velocity Range = 1.52 mps, +0.08, -0 mps

- 5. Attach Contact Area Prints.
- 6. Attach acceleration versus time plots for each impact.
- 7. Integrate the acceleration versus time plots and attach plots of the results that show velocity versus time.

Comments: (a) All measurements are referenced to the point where the horizontal plane through the SRP intersects the vertical line tangent to the inboard edge at the seat.

Recorded By:____ Approved By: _____

DATE: 1/04/2007

DATA SHEET 6 (CONTINUED)

HEAD FORM IMPACT CONTACT AREA AND ENERGY REQUIREMENTS

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	1/03/2007

SEAT NUMBER: S2

SEAT BACK REAR SURFACE

- 1. Locate x-y reference point on sketch above for head form impact locations. (Label the positive and negative directions, if applicable)
- 2. Identify head form impact location on sketch by placing H8, H9, H10, H11, H12, H13, and H14 in the appropriate location.
- 3. Define and mark on graphic above, the plane of reference for head form impact angle:
 - 0° = Parallel With Floor, (+) is Up, (-) is Down
 - X = From Inboard Edge of Seat
 - Y = Measured Vertically from the SRP

DATA SHEET 6 (CONTINUED)

HEAD FORM IMPACT CONTACT AREA AND ENERGY REQUIREMENTS

(1)	(2)		(3)	(4)*	(5)	(6)	(7	')	(8	(8)			
Head	Location (a)		Location (a)		Location (a)		Derived	Max	Engy	Colum	ın 5 <	Column	6 > 4.5
impact &				Impact	Velocity	HIC	Reqd	10	00	joules			
Test #	Х	Y	Angle	Velocity **	** mps		Joules	Yes-	No-	Yes-	No-		
				mps				Pass	Fail	Pass	Fail		
H8	370	365	0	6.69	6.60	125	5.85	PASS		PASS			
H9	270	470	0	6.69	6.76	94	12.18	PASS		PASS			
H10	170	470	0	6.68	6.35	86	12.83	PASS		PASS			
H11	70	470	0	6.63	6.63	73	18.83	PASS		PASS			
H12	270	365	0	6.69	6.63	97	12.51	PASS		PASS			
H13	170	365	0	6.68	6.63	102	14.82	PASS		PASS			
H14	70	365	0	6.67	6.60	111	5.74	PASS		PASS			

4. Complete the following table:

* Impact velocity from item No. 6 below

** Impact velocity range = 6.69 mps, +0, -0.08 mps

- 5. Attach acceleration versus time plots for each impact.
- 6. Integrate the acceleration versus time plots and attach plots of the results that show velocity versus time.

Comments: (a) All measurements are referenced to the point where the horizontal plane through the SRP intersects the vertical line tangent to the inboard edge at the seat.

Michael Janon Recorded By: Approved By:_

DATE: 1/03/2007

KNEE FORM IMPACT TEST

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:1/04/2007

SEAT NUMBER: S2

- 1. Locate x-y reference point on sketch above for knee form impact locations. (Label the positive and negative directions, if applicable)
- 2. Identify knee form impact location on sketch by placing K1, K2, K3, K4, K5, K6, K7, and K8 in the appropriate location.
- 3. Define the plane of reference for knee form impact angle:
 - 0° = Parallel With Floor, (+) is Up, (-) is Down
 - X = From Inboard Edge of the Seat
 - Y = Measured Vertically from the SRP

DATA SHEET 7 (CONTINUED)

KNEE FORM IMPACT TEST

(1)	(2)		(3)	(4)*	(5)	(6)	(7	')	3)	3)	
Knee	Location (a)		Speed Trap	Derived	Cont.	Resist	Column 5 >		Column 6 <		
impact &				Impact	Velocity	Area	Force	1935	mm²	2669N	
Test #	Х	Y	Angle	Velocity **	** mps	mm²	(N)	Yes-	No-	Yes-	No-
				mps				Pass	Fail	Pass	Fail
K1	270	246	0	4.86	4.58	5,850	1,158	PASS		PASS	
K2	170	246	0	4.87	4.76	5,730	1,022	PASS		PASS	
K3	70	246	0	4.87	4.68	5,100	1,661	PASS		PASS	
K4	270	150	0	4.88	4.47	5,220	993	PASS		PASS	
K5	170	150	0	4.80	4.79		983			PASS	
K6	70	150	0	4.83	4.62		1,348			PASS	
K7	170	52	0	4.81	4.69		1,089			PASS	
K8	70	52	0	4.82	4.48		1,614			PASS	

4. Complete the following table:

* Impact velocity from item No. 7 below

** Impact velocity range = 4.86 mps, +0.08, -0 mps for contact area, +0, -0.08 mps for force

- 5. Attach Contact Area Prints for K1, K2, K3 and K4.
- 6. Attach acceleration versus time plots for each impact.
- 7. Integrate the acceleration versus time plots and attach plots of the results that show velocity versus time for each impact K1 through K8.
- 8. Attach force vs. time plots for K5, K6, K7 and K8.

Comments: (a) All measurements are referenced to the point where the horizontal plane through the SRP intersects the vertical line tangent to the inboard edge at the seat.

Recorded By:_

Hichal Janon Approved By:____

DATE: 1/04/2007

SEAT BELT ASSEMBLY ANCHORAGES

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	3/29/2007

SEAT LOCATION: S3 in S4 Location

		PASS/FAIL
1.	Are all seat belt assembly anchorages designed for forward-facing occupant position?	PASS

			Measured		Load Application Angle (degrees)		
Seat Location	Seating Location	Anchor Type	Spacing (mm) *	Measured Angle **	Side View Horizontal Load Angle	Plan View From Vehicle Center Line	
63	Left	1	340	75°	10°	0°	
	Right	1	340	75°	10°	0°	

- The spacing for an individual seat belt assembly anchorage shall be at least 165mm apart as * measured between the vertical center lines of the bolt holes.
- ** Specified angle range above horizontal to be 20° to 75°

Seat Location	Seating Location	Required Load (N)	Actual Max. Test Load (N)	PASS/ FAIL	Comment
63	Left	22,000	15,047	FAIL	
	Right	22,000	14,347	FAIL	

Comments: The seat mounting failed before the required load was achieved.

Approved By: Michael Lanon

DATE: 3/29/2007

SECTION 4

TP-222-03 (APPENDIX B FMVSS 208, OCCUPANT CRASH PROTECTION FOR CLASS 2 SCHOOL BUSES) DATA SHEET B1 - SEAT BELT CHECK

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:4/25/2007

- 1. No. of designated seating positions (DSP): 17
- 2. Type of seat belt at each passenger DSP (571.208 S4.1.2.1, S4.1.2.2, S4.1.2.3)

	Belt Type (Type 1 or 2 Required)													
Seat No.	1	2	3	4	5	6	7	8						
DSP #1	Type 1	Type 1	Type 1	Type 1	Type 1	Type 1	Type 1	Type 1						
Inboard	i ype i	i ype i	Type T	i ype i	i ype i	i ype i	i ype i	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
DSP #2			Type 1	Type 1	Type 1	Type 1	Type 1	Type 1						
Outboard	турет	турет	турет	турет	турет	турет	турет	турет						

3. Type of retractor at each passenger DSP: (571.208 S7.1.1.2)

Retractor Type (Manual, ALR, ELR)								
Seat No.	1	2	3	4	5	6	7	8
DSP #1	Manual	Manual	Manual	Manual	Manual	Manual	Manual	Manual
Inboard	Manaai	Manaai	Manual	Manaa	Manaar	Manaa	Manaar	Manaa
DSP #2	Monual	Monual	Monual	Manual	Monuol	Manual	Manual	Monual
Outboard	walua	wallual	wallual	walua	walua	walua	waruar	walua

 Single point, push-button, accessible latch release at each passenger DSP (571.208 S7.2(c))

Pass: single point push-button

Fail: not single point push-button

Seat No.	1	2	3	4	5	6	7	8
DSP #1	Pass							
Inboard	1 000	1 435	1 435	1 435	1 000	1 435	1 435	1 435
DSP #2	Pass							
Outboard	r d55	F 855	F 855	r d55				

DATA SHEET B1 (CONTINUED) SEAT BELT CHECK

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:4/25/2007

5. Latch plate and buckle must not pass through conduit or guide between seat cushion and seat back at each passenger DSP. (571.208 S7.4.6)

Pass: latch plate and/or buckle will not fit through conduit or guide

Fail: latch plate and/or buckle will fit through conduit or guide

Seat No.	1	2	3	4	5	6	7	8
DSP #1	Pass							
DSP #2	Pass							

6. Either the latch plate, buckle, or webbing must stay on top or above the seat when the seat belt is unbuckled and the remaining two parts must stay accessible at each passenger DSP. (571.208 S7.4.6)

Pass: the seat belt meets the above requirements

Fail: the seat belt does not meet the above requirements

Seat No.	1	2	3	4	5	6	7	8
DSP #1	Pass							
DSP #2	Pass							

7. Seat belt fit test dummies

		Manufacturer	Serial Number
7.1	50% 6-Year old Child	FTSS	153
7.2	5% Adult Female	FTSS	507
7.3	50% Adult Male	FTSS	312
7.4	95% Adult Male	Denton	050

DATA SHEET B1 (CONTINUED) SEAT BELT CHECK

Test Vehicle:2006 US BUS SCHOOL BUSNHTSA No.:C60900Test Lab:MGA RESEARCH CORPORATIONTest Date:4/25/2007

Seat belt must fit persons whose dimensions range from those of a 50th percentile 6-year old child to those of a 95th percentile adult male. (571.208 S7.1.1)

Two seats checked

Pass: snug fitting seat belt

Fail: loose fitting seat belt

Seat Number		S3	S1
DSP #1	50% C	Pass	Pass
	95% AM	Pass	Pass
DSP #2	50% C	Pass	Pass
20. 112	95% AM	Pass	Pass

9. Driver's Seat (Not part of FMVSS 222)

Belt Type	2
Automatic Restraint	No
Type of Automatic	_
Restraint (if applicable)	

Pass: snug fitting seat belt Fail: loose fitting seat belt

5% AF	Pass
95% AM	Pass

Comments: None

Recorded By:

Lichal Janon Approved By:

DATE: 4/25/2007
DATA SHEET B2

SEAT BELT WARNING SYSTEM CHECK

Test Vehicle:
Test Lab:2006 US BUS SCHOOL BUS
MGA RESEARCH CORPORATIONNHTSA No.:
Test Date:C60900
4/25/2007X1.The occupant is in the driver's seat.
X2.The seat belt is in the stowed position.

- 3. The key is in the "on" or "start" position.
 - 4. The time duration of the audible signal beginning with key "on" or "start" is Seconds: 5
 - 5. The occupant is in the driver's seat.
 - 6. The seat belt is in the stowed position.
 - 7. The key is in the "on" or "start" position.
 - 8. The time duration of the warning light beginning with key "on" or "start" is Seconds: 0
 - 9. The occupant is in the driver's seat.
 - 10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
 - 11. The key is in the "on" or "start" position.
 - 12. The time duration of the warning light beginning with key "on" or "start" is Seconds: 0
 - 13. Complete the following table with the data from 4, 8, and 12 to determine which option is used.
 - 14. Record exactly the wording of the visual seat belt warning system: Symbol

		Warning light	Warning light specification	Audible signal	Audible signal specification*
S7.3 (a)(1)	Belt stowed & key on or start	Item 8: Stays On	60 seconds minimum	Item 4: 6	4 to 8 seconds
S7.3 (a)(2)	Belt latched & key on or start	Item 12: 0	4 to 8 seconds		
	Belt stowed & key on or start	Item 8: Stays On	4 to 8 seconds	Item 4: 6	4 to 8 seconds

* 49 USCS @ 30124 does NOT allow an audible signal to operate for more than 8 seconds.

A voluntary audible signal after the 4 to 8 second required signal may be provided. It must be differentiated from the required signal (5/25/2001 legal interpretation to Longacre and Associates).

Comments: None

Х

X X

Х

Х

Х

Х

X X

Х

Х

X X

Х

fichal Janois Recorded By: Approved By:____

DATE: 4/25/2007

SECTION 5

INSTRUMENTATION AND EQUIPMENT LIST

Test Vehicle:	2006 US BUS SCHOOL BUS	NHTSA No.:	C60900
Test Lab:	MGA RESEARCH CORPORATION	Test Date:	10/31/2006

Equipment	Description	Model/Serial No.	Cal. Date	Next Cal. Date
Computer	HP	Vectra / US03263612		
Test Fixture	MGA	TF2003		
A/D Interface	Metrabyte	DAS-1802		
Load Cell	Interface	1210AF-SK / 62736	1/29/07	7/24/07
Load Cell	Interface	1210AF / 137778	11/3/06	5/3/07
Inclinometer	Digital Protractor	Pro 360 / Comp Lab	10/4/06	4/4/07
Steel Tape	Stanley	Powerlock / 278	9/26/06	3/26/07
Impact Fixture	MGA	IF2003A		
Camera	Sony	DSC-S75		
Planimeter	Sokkia Corp.	Planix5 007319	11/22/06	5/22/07
Accelerometer	Endevco	7264-2000 / W04807	10/4/06	4/4/07
Linear Motion Transducer	Ametek	P-25A / 1202- 19366	10/30/06	4/30/07
Linear Motion Transducer	Ametek	P25A / 21954	10/30/06	4/30/07

SECTION 6 PHOTOGRAPHS

TABLE OF PHOTOGRAPHS

<u>No.</u>		<u>Page No.</u>
1	Left Side View of School Bus	36
2	Right Side View of School Bus	37
3	3/4 Front View From Left Side of School Bus	38
4	3/4 Rear View From Right Side of School Bus	39
5	Certification Label and Tire Placard	40
6	Vehicle Interior View From Front to Rear	41
7	Vehicle Interior View From Rear to Front	42
8	Pre-Test of Seat Back S6 Force Deflection Forward Test	43
9	Post-Test of Seat Back S6 Force Deflection Forward Test	44
10	Pre-Test of Seat Back S7 Force Deflection Forward Test	45
11	Post-Test of Seat Back S7 Force Deflection Forward Test	46
12	Pre-Test of Seat Back S4 Force Deflection Rearward Test	47
13	Post-Test of Seat Back S4 Force Deflection Rearward Test	48
14	Pre-Test of Seat Back S5 Force Deflection Rearward Test	49
15	Post-Test of Seat Back S5 Force Deflection Rearward Test	50
16	Post-Test of Head and Knee Impact Locations on Seat S2	51
17	Pre-Test FMVSS 222 Seat Belt Anchorage S3 (in Location S4)	52
18	Post-Test FMVSS 222 Seat Belt Anchorage Damage	53
19	Post-Test FMVSS 222 Seat Belt Anchorage Damage	54
20	Post-Test FMVSS 222 Seat Belt Anchorage Damage	55

 NHTSA No.:
 C60900

 Test Date:
 10/31/2006

Left Side View of School Bus

Test Vehicle: Test Lab: 2006 US BUS SCHOOL BUS MGA RESEARCH CORPORATION

Test Vehicle: Test Lab: 2006 US BUS SCHOOL BUS MGA RESEARCH CORPORATION

2006 US BUS SCHOOL BUS MGA RESEARCH CORPORATION NHTSA No.: **C60900** Test Date: **10/31/2006**

Test Vehicle: Test Lab:

SECTION 7 TEST PLOTS

TABLE OF TEST PLOTS

<u>No.</u>		<u>Page No.</u>
1	Seat Back Forward Deflection Seat S6 (Upper)	57
2	Seat Back Forward Deflection Seat S6 (Lower)	58
3	Seat Back Forward Deflection Seat S7 (Upper)	59
4	Seat Back Forward Deflection Seat S7 (Lower)	60
5	Seat Back Rearward Deflection S4	61
6	Seat Back Rearward Deflection S5	62
7	FMVSS 222 Seat Belt Anchorage	63
8	H1 Head Form Impact (1.5 m/s)	64
9	H2 Head Form Impact (1.5 m/s)	65
10	H3 Head Form Impact (1.5 m/s)	66
11	H4 Head Form Impact (1.5 m/s)	67
12	H5 Head Form Impact (1.5 m/s)	68
13	H6 Head Form Impact (1.5 m/s)	69
14	H7 Head Form Impact (1.5 m/s)	70
15	H8 Head Form Impact (6.69 m/s)	71
16	H9 Head Form Impact (6.69 m/s)	72
17	H10 Head Form Impact (6.69 m/s)	73
18	H11 Head Form Impact (6.69 m/s)	74
19	H12 Head Form Impact (6.69 m/s)	75
20	H13 Head Form Impact (6.69 m/s)	76
21	H14 Head Form Impact (6.69 m/s)	77
22	K1 Knee Form Impact	78
23	K2 Knee Form Impact	79
24	K3 Knee Form Impact	80
25	K4 Knee Form Impact	81
26	K5 Knee Form Impact	82
27	K6 Knee Form Impact	83
28	K7 Knee Form Impact	84
29	K8 Knee Form Impact	85

FORCE (N) VS DISPLACEMENT (mm)

58

FORCE (N) VS DISPLACEMENT (mm)

60

62

Test Date: 3/29/2007 NHTSA No: C60900

VELOCITY X (m/s) VS TIME (S)

VELOCITY X (m/s) VS TIME (S)

VELOCITY X (m/s) VS TIME (S)

VELOCITY X (m/s) VS TIME (S)

VELOCITY X (m/s) VS TIME (S)

Test Date: 1/3/2007

Component ID: US BUS S2, Location H8

Test Date: 1/3/2007

Component ID: US BUS S2, Location H9

Test Date: 1/3/2007

Component ID: US BUS S2, Location H10

Test Date: 1/3/2007

Component ID: US BUS S2, Location H11

Test Date: 1/3/2007

Component ID: US BUS S2, Location H12 NHTSA #: C60900

Test Date: 1/3/2007

Component ID: US BUS S2, Location H13

Test Date: 1/3/2007

Component ID: US BUS S2, Location H14

Test Desc: Knee Form Impact Component ID: US BUS S2, Location K1

SECTION 8

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H1 / SEAT S2

H1 US BUS 66.4 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H2 / SEAT S2

H2 US BUS 63.1 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H3 / SEAT S2

H3 US BUS 59.6 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H4 / SEAT S2

H4 US BUS 57.8 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H5 / SEAT S2

H5 US BUS 69.3 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H6 / SEAT S2

H6 US BUS 67.3 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

H7 / SEAT S2

H7 US BUS 67.0 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

K1 / SEAT S2

K1 US BUS 58.5 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

K2 / SEAT S2

K2 US BUS 57.3 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

K3 / SEAT S2

K3 US BUS 51.0 cm²

WELT CONTACT POINTS

Test Vehicle:2006 US BUS SCHOOL BUSTest Lab:MGA RESEARCH CORPORATION

NHTSA No.: **C60900** Test Date: **2/27/2007**

K4 / SEAT S2

K4 US BUS 52.2 cm²

SECTION 9 BUS FLOOR PLAN

SECTION 10 LABORATORY NOTICE OF TEST FAILURE

LABORATORY NOTICE OF TEST FAILURE TO OVSC

Test Procedure:	FMVSS 222	Test Date:	November 16, 2006
Test Vehicle:	US Bus	Test Lab:	MGA Research Corp.
NHTSA No.:	C60900	Project Engineer:	Jim Hansen
Contract No.:	DTNH22-02-D-01057	Delivery Order No.:	5
MFR.:	US Bus	VIN:	1GBHG31V561226021
Build Date:	08/06		

TEST FAILURE DESCRIPTION

During the rearward deflection test, the S5 seat back moved to within 102 mm of the seat located directly behind the test seat prior to reaching the energy absorption required by S5.1.4.2. A repeat test on a new seat was performed while limiting the travel of the loading bar. The seat back still moved to within 102 mm of the seat located directly behind the test seat well before the energy absorption requirement was met.

FMVSS REQUIREMENTS DESCRIPTION

<u>Paragraph S5.1.4 (c)</u>: Seat performance rearward, "The seat shall not deflect by an amount such that any part of the seat moves to within 102 mm of any part of another passenger seat in its originally installed position."

Remarks: No remarks.

Notification to NHTSA (COTR): Brian Smith

Date: November 16, 2006

By:

SECTION 10 (CONTINUED) LABORATORY NOTICE OF TEST FAILURE

LABORATORY NOTICE OF TEST FAILURE TO OVSC

Test Procedure:	FMVSS 222	Test Date:	March 29, 2007
Test Vehicle:	2006 US Bus	Test Lab:	MGA Research Corp.
NHTSA No.:	C60900	Project Engineer:	Eric Peschman
Contract No.:	DTNH22-02-D-01057	Delivery Order No.:	005
MFR.:	US Bus	VIN:	1GBHG31V561226021
Build Date:	8/03/2006		

TEST FAILURE DESCRIPTION

The force application, for the seat belt assembly anchorages, in the S5 location did not reach the specified force before the failure of the floor and wall mount anchor structure. The force requirement as specified in 49 CFR 571.210 is 22,000 N. The actual force reached 14,602 N before failure of the floor and wall mount anchor structure.

FMVSS REQUIREMENTS DESCRIPTION

<u>Paragraph S.5.1:</u> "Apply the force at the onset rate of not more than 222,411 N per second. Attain the 22,241 N force in not more than 30 seconds and maintain it for 10 seconds."

Remarks: No remarks.

Notification to NHTSA (COTR): Lawrence Q. Valvo

Date: March 29, 2007

Eiro Jerebara By: