126-TRC-11-008

SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems

Kia Motors Corporation 2011 Kia Soul NHTSA No. CB0513

TRANSPORTATION RESEARCH CENTER INC. 10820 State Route 347 East Liberty, Ohio 43319

October 13, 2011

FINAL REPORT

Prepared Under Contract No.: DTNH22-08-D-00097

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590 Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. <u>DTNH22-08-D-00097</u>.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By:

Alan Ida

Approved By:

Ken Webster

Approval Date:

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By:

Acceptance Date:

1. Report No.	2. Government Accession No.	Recipient's Catalog No.
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
126-TRC-11-008		
4 Title and Code title		5 Parast Pata
4. Title and Subtitle		5. Report Date
Final Report of FMVSS 126 Compli	iance Testing of 2011 Kia Soul, NHTSA	October 13, 2011
No. CB0513	,	· ·
		6. Performing Organization Code
		TRC 20080734 / 1108
7. Author(s)		8. Performing Organization Report No.
Alan Ida, Project Engineer		o o.
Ken Webster, Manager, DDO P	Project Operations	TRC-DOT-126-11-008
Performing Organization Name	and Address	10. Work Unit No.
3. Tenoming Organization Name	and Address	10. WORK OTHER TOO.
Transportation Research Cente	er Inc.	
10820 State Route 347		11. Contract or Grant No.
East Liberty, OH 43319		DTNH22-08-D-00097
12. Sponsoring Agency Name and	Address	13. Type of Report and Period Covered
U.S. Department of Transporta		To. Type of Report and Forest Covered
National Highway Traffic Safety	y Administration	Final test report
Enforcement		August 17, 2011 to October 13, 2011
Office of Vehicle Safety Compl	iance	
1200 New Jersey Avenue, SE, West Building, 4 th Floor (NVS-2	221)	
Washington, D.C. 20590	,	
-		14. Sponsoring Agency Code
		NVS-220
15. Supplementary Notes		1440 220
16. Abstract		
		ordance with the specifications of the Office of Vehicle Saf
Test failures identified were as follo	P-126-02 for the determination of FMVSS	S 126 compliance.
rest failures identified were as folio	WS. NOTE	
17. Key Words		18. Distribution Statement
Compliance Testing Safety Engineering		Copies of this report are available from:
FMVSS 126		NHTSA Technical Information Services (TIS)
1 111100 120		(NPO 411)
		1200 New Jersey Avenue, SE
		Washington, D.C. 20590
		Email: tis@nhtsa.dot.gov FAX: (202) 493-2833
		1 AA. (202) 430-2000
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages 64 22.
report)		
Unclassified	Unclassified	

TABLE OF CONTENTS

SECTION		<u>PAGE</u>
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	l 27
5.0	PHOTOGRAPHS	28
6.0	DATA PLOTS	46
7.0	OTHER DOCUMENTATION 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates	51 52 59 60 61 63 64

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a MY 2011 Kia Soul meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

This standard establishes performance and equipment requirements for Electronic Stability Control (ESC) Systems installed in passenger cars, multipurpose passenger vehicles, trucks, and buses with a gross vehicle weight rating of 4,536 kilograms or less.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the MY 2011 Kia Soul was conducted at Transportation Research Center Inc. (TRC Inc.) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC System that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle, and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20km/h (12.4mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7Hz Sine with Dwell (SWD) Steering Maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

- At 1.0 second after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- At 1.75 seconds after completion of a required sine with dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial

straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 1 of 2)

VEHICLE MAKE/MODEL/BODY STYLE:	Kia / Soul / MPV	
VEHICLE NHTSA NO.: CB0513	VIN: <u>KNDJT2A23B7306367</u>	
VEHICLE TYPE: MPV DATE OF M	IANUFACTURE: 04/11	
LABORATORY: Transportation Rese	earch Center Inc.	
REQUIREMENTS	F	PASS/FAIL
ESC Equipment and Operational Character	ristics (Data Sheet 2)	
The vehicle is to be equipped with an ESC Sysand operational characteristics requirements.		PASS
ESC Malfunction Telltale (Data Sheet 3)		
The vehicle is equipped with a telltale that indi ESC System malfunctions. (S126, S5.3)	icates one or more _	PASS
"ESC Off" and other System Controls and	Telltale (Data Sheet 3 & 4)	
The vehicle is equipped with an ESC off telltal has been put into a mode that renders the ES satisfy the performance requirements of the st exists. (S5.5.1)	C System unable to	PASS
If provided, off control and other system control off telltale meets the operational requirements S5.4.2, S5.5.4, and S5.5.9)		PASS

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS ... continued

DATA SUMMARY (Sheet 2 of 2)

REQUIREMENTS	PASS/FAIL
If provided, off control and other system controls as well as the ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1, S5.4.2, S5.5.4, and S5.5.9)	PASS
Vehicle Lateral Stability (Data Sheet 8)	
Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	<u>PASS</u>
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	<u>PASS</u>
Vehicle Responsiveness (Data Sheet 8)	
Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lbs.) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 kg (7,716 lbs.). (S126 S5.2.3)	<u>PASS</u>
ESC Malfunction Warning (Data Sheet 9)	
Warning is provided to driver after malfunction occurrence. (S126. S5.3)	PASS_
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	PASS_

REMARKS

3.0 TEST DATA

DATA SHEET 1 (Sheet 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

VEHICLE MAKE/MODEL/BC	DY STYLE: K	<u>ia / Soul / MP</u>	V
NHTSA No.: CB0513	TEST D	ATE: <u>8</u>	-22-11
VIN: KNDJT2A23B7306	367 MANUF	ACTURE DAT	ΓΕ: <u>04/11</u>
GVWR: 1,760 KG FRON	T GAWR: <u>980</u> K	G REAR	GAWR <u>970</u> KG
SEATING POSITIONS: FI	RONT2	REAR <u>3</u>	_
ODOMETER READING AT S	START OF TEST: _	139 (224)	_ Miles (Kilometers)
DESIGNATED TIRE SIZE(S)	FROM VEHICLE L	ABELING:	
Front Axle <u>P205 / 5</u>	<u>5R 16</u> R	ear Axle <u>P</u>	2205 / 55R 16
INSTALLED TIRE SIZE(S) C	N VEHICLE:		
From Tire Sidewall	Front Axle		Rear Axle
Manufacturer and Model _	Nexen CP662		Nexen CP662
Tire Size Designation _	P205 / 55R 16 8	9H	P205 / 55R 16 89H
Are installed tire sizes same and lift no, contact COTR for further	er guidance.		Yes No
DRIVE CONFIGURATIONS	(MARK ALL THAT A	APPLY):	
X Two Wheel Drive (2W All Wheel Drive (AWE Four Wheel Drive Aut Four Wheel Drive Hig Four Wheel Drive Hig Four Wheel Drive Lov Four Wheel Drive Lov Other (define	o) omatic – differential h Gear Unlocked Co h Gear Locked Cen v Gear Unlocked Ce	not locked fu enter Differentia ter Differentia enter Different	II time (4WD Automatic) tial I ial
CALLEL COEILLE			j

DATA SHEET 1 (Sheet 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, per (For each of the vehicle's drive configurations identify available)		
Drive Configuration 2WD Mode(s) default		
Drive Configuration		
Drive Configuration Mode(s)		
VEHICLE STABILITY SYSTEMS (Check applicable technology)	ologies	s):
X ESC X Traction Control	X	Roll Stability Control
Active Suspension X Electronic Throttle Control	l	_Active Steering
X_ABS		
List other systems;		
REMARKS:		
RECORDED BY: Alan Ida APPROVED BY: Ken Webster	DATE:	8-22-11 8-25-11

DATA SHEET 2 (Sheet 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

VEHICLE MAKE/MODEL/BODY	STYLE:	Kia / Soul / MF	<u> </u>	
NHTSA No.: CB0513		TEST DATE:_	8-23-11	
ESC SYSTEM IDENTIFICATION	:			
Manufacturer / Model <u>Mando</u>	o / MGH 60 E	SC		
ESC SYSTEM HARDWARE (Che X Electronic Control Unit X Wheel Speed Sensors X Yaw Rate Sensor	X Hydrauli X Steering X Lateral	c Control Unit Angle Sensor Acceleration Se	nsor	
,				
ESC SYSTEM OPERATIONAL C	CHARACTERI	STICS:		
System is capable of generating I	brake torques	at each wheel		_Yes (PASS) _No (FAIL)
List and describe component(s):_ _	Wheel Bra			
System is capable of determining	yaw rate			_Yes (PASS) _ No (FAIL)
List and describe component(s):_	Yaw Rate	Sensor		()
System is capable of monitoring of	_	•		_Yes (PASS) _ No (FAIL)
List and describe component(s):_	Steering whe	el angle senso	<u>r</u>	
System is capable of estimating s	side slip or sid	e slip derivatior	n <u>X</u>	_ Yes (PASS) _ No (FAIL)
List and describe component(s): brake pressure sensor, steering whee output of the engine management s	el angle, yaw ra system, which a	te sensor, lateral are fed to the sig	acceleration nal processi	sensor, and CAN ng and observe
module. In this functional block, the sas coefficient of friction, slip angle of v				
are used to determine estimated side				ato ar Tito orgital

DATA SHEET 2 (Sheet 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC SYSTEM OPERATIONAL CHARACTERISTICS (continued):	
System is capable of modifying engine torque during ESC activation	n. X Yes (PASS) No (FAIL)
Method used to modify engine torque: <u>If wheel brake slip cannot solve</u> by pressure increase, the engine torque can be reduced using ignition cutting fuel delivery.	
System is capable of activation at speeds of 20 km/h (12.4 mph) and higher.	XYes (PASS) No (FAIL)
Speed system becomes active. 15 km/h (9.3 mph)	
System is capable of activation during the following driving phases (acceleration, deceleration, coasting, and during activation of ABS or traction control).	XYes (PASS) No (FAIL)
Driving phases that the system is capable of activation. The Estauring all driving phases (acceleration, braking, coasting, during activation control), but ESC control is disabled during reverse driving a	ctivation of the ABS or
Vehicle manufacturer submitted documentation explaining how the ESC system mitigates understeer?	XYes (PASS) No (FAIL)
DATA INDICATES COMPLIANCE PASS/FAIL _	PASS
RECORDED BY: Alan Ida DATE APPROVED BY: Ken Webster DATE	

DATA SHEET 3 (Sheet 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

VEHICLE MAKE/MODEL/BODY STYLE: Kia / Soul / MPV
VEHICLE NHTSA NO. <u>CB0513</u> TEST DATE: <u>8-24-11</u>
ESC Malfunction Telltale
Vehicle is equipped with malfunction telltale? X Yes (Pass) No (Fail)
Telltale Location <u>Instrument cluster, right side, between water temperature and fuel gauge</u>
Telltale ColorAmber
Telltale symbol or abbreviation used.
Or ESC X Vehicle uses this symbol Vehicles uses this abbreviation Neither symbol or abbreviation is used
If different than identified above, make note of any message, symbol or abbreviation used.
Is telltale part of a common space? Yes X No
Is telltale also used to indicate activation of the ESC system?XYesNo
If yes, explain telltale operation during ESC activation: During ESC Activation, the

3.0 DATA SHEETS....continued

DATA SHEET 3 (Sheet 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)	
Vehicle is equipped with "ESC Off" telltale?	X_YesNo
Is "ESC OFF" telltale combined with "ESC Malfunction" tellta telltale?	-
	Yes <u>X</u> No
Telltale Location <u>Instrument cluster, right side, between v</u> gauge	vater temperature and fuel
Telltale Color Amber	
Telltale symbol or abbreviation used.	
Or ESC OFF X Vehicle uses Vehicle uses Neither symb	-
OFF	
If different than identified above, make note of any message used.	, symbol or abbreviation
Is telltale part of a common space? Yes	X No
DATA INDICATES COMPLIANCE (Vehicle is compliant if equipped with a malfunction telltale)	PASS/FAIL PASS
REMARKS:	
RECORDED BY: Alan Ida APPROVED BY: Ken Webster	DATE: 8-24-11 DATE: 8-25-11

DATA SHEET 4 (Sheet 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

"ESC OFF" Controls Identification and Operational Check:

Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard?

			X	Yes	No
Type of control or controls provide (mark all that apply)	ed?	"ESC		al cont de	" control rol with an
Identify each control location, laboration	eling and sele	ctable mode	s.		
First Control: Location	on <u>Instrumer</u> driver side		of steeri	ng colu	ımn, below
Labeli	ng <u>Skid car s</u>	ymbol with "	'Off" und	lerneat	h
Modes	ESC Off /				
	ESC On /	Traction Col	ntrol On		
Identify standard or default drive	configuration	Defa	ult – 2W	D	
Verify standard or default drive co	nfiguration se	lected.	X	Yes	No
Does the "ESC Off" telltale illuming selection of the "ESC Off" mode of	•	nction contro	ol?		off control or No (fail)
Does the "ESC Off" telltale exting "Lock" or "Off" and then back aga If no, describe how the off control	in to the "On"	("Run") posi	tion?		' ("Run") to _. No (fail)

DATA SHEET 4 (Sheet 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

	Control Modes	illumin activatio	Off" telltale ates upon n of control? es/No)	"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)
	N/A	,	,	, ,
ign			ock" or "Off" and	ne telltale extinguish when the
ls t		ith any ancillary co	ntrols that upon	activation may deactivate th
	rformance requirement		node or modes	that may no longer satisfy th
				YesX_No
Lis	t and describe each co	ntrol (i.e. alternate	drive configura	tion selection controls):
	Ancillary Control:	Control Descripti	on	
		Labeling		

Labeling

APPROVED BY: Ken Webster

DATA SHEET 4 (Sheet 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC System.

Ancillary Control N/A	Control Activates "I Telltale? (Yes/		Warnings or Messages Provide
	at illuminate the "ESC ycling the ignition syste		e above identify if the "ESC Off" tellt
			Off" telltale extinguishes upon
And	illary Control N/A	су	cling ignition? (Yes/No)
	IN/A		
configuration designe	ed for low-speed, off–r		le into a low-range four-wheel dr
			g, the ESC System may remain turn back on and therefore the "ESC C
celltale may not extin	iguish.		pack on and therefore the "ESC C
elltale may not extin	iguish.		pack on and therefore the "ESC C
celltale may not extin	iguish.		pack on and therefore the "ESC C

DATE: 8-25-11

DATA SHEET 5 (Sheet 1 of 3) VEHICLE AND TEST TRACK DATA

VEHICLE MAKE/MODEL/BODY	STYLE: Kia / Soul / MPV
NHTSA No.: CB0513	TEST DATE: 8-22-11
Test Track Requirements:	Test Surface Slope (0-1 %)
	Peak Friction Coefficient (at least 0.9)0.97
Full Fluid Levels: Fuel X	Coolant X Other Fluids Washer (specify)
Tire Pressures: Required:	Front Axle 230 kPa Rear Axle 230 kPa
Actual: LF: 230 kPa	RF: <u>230 kPa</u> LR: <u>230 kPa</u> RR: <u>230 kPa</u>
Vehicle Dimensions: Track	Width 155.9 cm Wheelbase 255.1 cm
Roof I	Height <u>160.5</u> cm
Vehicle weight ratings: GAW	R Front 980 KG GAWR Rear 970 KG
Unloa	aded Vehicle Weight (UVW)
Front Axle 814.4 KG	Left Front 405.6 KG Right Front 408.8 KG
Rear Axle 503.0 KG	Left Rear 255.8 KG Right Rear 247.2 KG
Total UVW 1,317.4 KG	
Baseline Weight and Out	trigger Selection (only for MPVs, Trucks, Buses)
Calculated Baseline Weight (UV)	N+ 73 kg)1,390.4 KG
Outrigger size required ("Standar Standard - Baseline wei Heavy - Baseline wei	d" or "Heavy") <u>Standard</u> ight under 2,722 kg (6,000 lbs.) ight equal to or greater than 2,722 kg (6,000 lbs.)

DATA SHEET 5 (Sheet 2 of 3) VEHICLE AND TEST TRACK DATA

UVW with Outriggers (only for MPVs, Trucks, Buses)

Front Axle 854.0 KG Left Front 425.2 KG Right Front 428.8 KG

Rear Axle 542.0 KG Left Rear 275.4 KG Right Rear 266.6 KG

Total UVW w/ Outriggers 1,396.0 KG

Loaded Vehicle Weight w/ Driver and Instrumentation (No Ballast)

Front Axle 934.4 KG Left Front 473.6 KG Right Front 460.8 KG

Rear Axle 600.8 KG Left Rear 308.8 KG Right Rear 292.0 KG

Total Loaded Vehicle Weight 1,535.2 KG

Ballast Required = [UVW w/ Outriggers + 168 KG] - Total Loaded Weight w/
Driver and Instrumentation

= [1,396.0 KG + 168 KG] - 1,535.2 KG

= <u>28.8</u> KG

Total Loaded Vehicle Weight

 Front Axle
 947.6
 KG
 Left Front
 476.0
 KG
 Right Front
 471.6
 KG

 Rear Axle
 616.4
 KG
 Left Rear
 314.6
 KG
 Right Rear
 301.8
 KG

Total Loaded Vehicle Weight 1,564.0 KG

DATA SHEET 5 (Sheet 3 of 3) VEHICLE AND TEST TRACK DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition

x-distance (longitudinal)	e front axle centerline. e toward rear of vehicle.)		
y-distance (lateral)	e vehicle centerline. er toward the right.)		
z-distance (vertical)	e ground plane. nd up.)		
Locations:			
	Center of Gravity	Inertial Sensing System	
x-distance	<u>100.5</u> cm	<u>152.0</u> cm	
y-distance	<u>-0.9</u> cm	<u>-1.9</u> cm	
z-distance	<u>61.0</u> cm	89.7_cm	
Distance Between Ultras	sonic Sensors:	<u>178.3</u> cm	
TEST TRACK DATA MEE If no, explain:		YES/NO <u>YES</u>	
REMARKS:			
RECORDED BY: <u>Alan I</u> APPROVED BY: Ken V	<u>da</u> Vebster	DATE: <u>8-22-11</u> DATE: 8-25-11	

DATA SHEET 6 (Sheet 1 of 3) BRAKE AND TIRE CONDITIONING

/EHICLE MAKE/MODEL/BODY STYLE: Kia / Soul / MPV
'EHICLE NHTSA No.: CB0513
Measured Cold Tire Pressures: LF <u>230</u> kPa RF <u>230</u> kPa
LR <u>230</u> kPa RR <u>230</u> kPa
Vind Speed0.0 m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)
ambient Temperature (7°C (45°F) - 40°C (104°F))16.7_°C
Brake Conditioning Time; 7:03 AM Date; 8-23-11
56 km/h (35 mph) Brake Stops
Number of stops executed (10 required) 10 stops
Observed deceleration rate range (.5g target)0.50 - 0.56_ g
72 km/h (45 mph) Brake Stops
Number of stops executed (3 required) 3 stops
Number of stops ABS activated (3 required) stops
Observed deceleration rate range1.00 - 1.10 _ g
72 km/h (45 mph) Brake Cool Down Period
Duration of cool down period (5 minutes min.) 5:32 minutes

DATA SHEET 6 (Sheet 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning Series No. 1 Time: 7:21 AM Date: 8-23-11

Measured Tire Pressures: LF 238 kPa RF 238 kPa

LR 234 kPa RR 234 kPa

Wind Speed 0.0 m/sec
(10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 16.7 °C

30 meter (100 ft) Diameter Circle Maneuver								
Test Runs Steering Direction Target Lateral Observed Lateral Observed Vehicle								
		Acceleration (g)	Acceleration (g)	Speed (km/h)				
1-3	Clockwise	0.5-0.6	0.55	32.2				
4-6	Counterclockwise	0.5-0.6	0.55	32.2				

1 Hz 5 Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle For 0.5-0.6g Lateral Acceleration						
Test Runs	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral	Observed Peak Lateral		
			Acceleration (g)	Acceleration (g)		
1	56 <u>+</u> 2 (35 <u>+</u> 1)	30	0.5-0.6	0.27		
2	56 <u>+</u> 2 (35 <u>+</u> 1)	60	0.5-0.6	0.49		
3	56 <u>+</u> 2 (35 <u>+</u> 1)	70	0.5-0.6	0.54		
4	56+2 (35+1)		0.5-0.6			

Steering wheel angle that corresponds to a peak 0.5–0.6g lateral acceleration; _____degrees

1 Hz 10 Cycle Sinusoidal Steering Maneuver						
Test Runs	Vehicle Speed	Steering Wheel	Target Peak	Observed Peak		
	Km/h (mph)	Angle (degrees)	Lateral	Lateral		
			Acceleration (g)	Acceleration (g)		
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-10)	0.5-0.6	0.56		
4	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-9)	0.5-0.6	0.56		
		140 (cycle 10)*	N/A	0.89		

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9.

DATA SHEET 6 (Sheet 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditionin	g Series No. 2	<u>SAM</u> Dat	e: <u>8-23-11</u>						
Measured Tire Pr	ressures: L	F <u>241</u> kPa	RF <u>241</u>	kPa					
	L	.R <u>238</u> kPa	RR <u>238</u>	s_kPa					
Wind Speed 0.4 m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks) Ambient Temperature (7°C (45°F) - 40°C (104°F)) 23.3 _ °C									
	30 meter (1	00 ft) Diameter Circle	e Maneuver						
Test Runs	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (km/h)					
1-3	clockwise	0.5-0.6	0.55	32.2					
4-6	counterclockwise	0.5-0.6	0.55	32.2					
De	etermine Steering WI	Sinusoidal Steering heel Angle For 0.5-0.		on					
Test Runs	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)					
1	56 <u>+</u> 2 (35 <u>+</u> 1)	N/A	0.5-0.6	N/A					
2	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6						
3	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6						
4	56 <u>+</u> 2 (35 <u>+</u> 1)		0.5-0.6						
Steering wheel ang	le that corresponds	to a peak 0.5–0.6g la	teral acceleration; _	70 degrees					
	1 Hz 10 Cyc	le Sinusoidal Steerin	g Maneuver						
Test Runs	Vehicle Speed (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)					
1 - 3	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-10)	0.5-0.6	0.54					
4	56 <u>+</u> 2 (35 <u>+</u> 1)	70 (cycles 1-9)	0.5-0.6	0.54					
		140 (cycle 10)*	N/A	0.90					
* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9. REMARKS: RECORDED BY: Alan Ida DATE: 8-23-11									
APPROVED BY:			DATE:	8-25-11					
, I I I I I I I I I I I I I I I I I I	TENOVED BT. Keil Websiel DATE. 6-25-11								

DATA SHEET 7 (1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

/EHICLE MAKE/MODEL/BODY STYLE: <u>Kia / Soul / MPV</u>
/EHICLE NHTSA No.: CB0513 TEST DATE: 8-23-11
Wind Speed0.0m/sec (10m/sec (22mph) max for passenger cars; 5m/s (11mph) max. for MPVs and Trucks)
Ambient Temperature (7°C (45°F) - 40°C (104°F))18.3°C
Static Data File Number: 0009
Selected Drive Configuration: 2WD
Selected Mode: default

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle (a_{y,30 degrees})

$$a_{y,30 \text{ degrees}} = \underline{0.37} g$$

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at .55g.

$$\frac{30\,\mathrm{degrees}}{a_{\mathrm{y},30\,\mathrm{degrees}}} = \frac{\delta_{\mathit{SIS}}}{0.55\,\mathrm{g}}$$

$$\frac{\delta_{\mathit{SIS}} = \underline{44.6} \quad \mathrm{degrees} \ @ \ 0.55\mathrm{g}}{\delta_{\mathit{SIS}} = \underline{40} \quad \mathrm{degrees} \ (rounded)}$$

Steering Wheel Angle at Corrected 0.3 g Lateral Acceleration:

toorning rimoon range as corrected one g =accrain reconstruction							
Maneuver #	Initial Steer Direction	Time Clock (5 min max between runs)	Steering Wheel Angle to nearest 0.1 degree (degrees)	All Conditions Met?			
0011	Left	8:06 am	-28.5	Yes			
0012	Left	8:09 am	-28.7	Yes			
0014	Left	8:14 am	-28.7	Yes			
0015	Right	8:17 am	28.3	Yes			
0016	Right	8:20 am	27.7	Yes			
0018	Right	8:25 am	29.2	Yes			

DATA SHEET 7 (2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\delta_{0.3 \text{ g, overall}} = \underline{28.5}$$
 degrees [to nearest 0.1 degree]

REMARKS:

 RECORDED BY:
 Alan Ida
 DATE:
 8-23-11

 APPROVED BY:
 Ken Webster
 DATE:
 8-25-11

DATA SHEET 8 (1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

VEHICLE MAKE/MODEL/BODY STYLE: <u>Kia</u>	/ Soul / MPV	
VEHICLE NHTSA No.: CB0513	TEST DATE: 8-23-11	
Tire conditioning completed ESC system is enabled On track calibration checks have been completed On track static data file for each sensor obtained		No No No No
Selected Drive Configuration: 2WD Selected Mode: default	<u></u>	
Overall steering wheel angle $(\delta_{0.3 \text{ g, overall}})$	28.5 degrees	
Static Data File Number 0023		

<u>Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction</u>

	Clock Time	Commar Steering \	Wheel	,	Yaw Rate		YRR at 1.0 sec after		YRR at 1.75 sec after		
	(1.5 – 5	Angle (degre		((degrees/sec)			COS [<u><</u> 35%]		COS [≤ 20%]	
Maneuver #	min between each test run)	Scalar	Angle	$\dot{\psi}_{\it Peak}$	$\dot{\psi}_{ ext{1.0sec}}$	$\dot{\psi}_{ m 1.75sec}$	%	Pass/ Fail	%	Pass/ Fail	
0024	10:40 am	1.5* $\delta_{0.3q}$	43	12.58	-0.19	-0.17	-1.53	Pass	-1.34	Pass	
0025	10:43 am	$2.0^* \delta_{0.3 g}$	57	16.41	-0.19	-0.06	-1.16	Pass	-0.36	Pass	
0026	10:46 am	$2.5^* \delta_{0.3 g}$	71	20.11	-0.09	-0.01	-0.46	Pass	-0.06	Pass	
0027	10:49 am	$3.0^* \delta_{0.3 g}$	86	24.09	-0.16	-0.04	-0.66	Pass	-0.18	Pass	
0028	10:52 am	$3.5^* \delta_{0.3 q}$	100	28.36	-0.06	-0.03	-0.20	Pass	-0.12	Pass	
0029	10:55 am	$4.0^* \delta_{0.3 q}$	114	27.87	-0.22	-0.04	-0.78	Pass	-0.16	Pass	
0030	10:58 am	4.5* $\delta_{0.3 g}$	128	30.00	-0.14	-0.12	-0.47	Pass	-0.41	Pass	
0031	11:02 am	5.0* δ _{0.3 g}	143	31.16	-0.09	-0.15	-0.29	Pass	-0.49	Pass	
0032	11:07 am	$5.5^*~\delta_{0.3~q}$	157	34.02	-0.06	-0.11	-0.17	Pass	-0.32	Pass	
0033	11:10 am	$6.0^*~\delta_{0.3~q}$	171	34.05	-0.05	-0.07	-0.14	Pass	-0.20	Pass	
0034	11:13 am	$6.5^* \delta_{0.3 g}$	185	36.73	-0.20	-0.23	-0.54	Pass	-0.63	Pass	
0035	11:16 am	$7.0^* \delta_{0.3 g}$	200	37.80	-0.12	-0.13	-0.32	Pass	-0.35	Pass	
0036	11:19 am	$7.5^* \delta_{0.3 q}$	214	42.38	-0.06	-0.08	-0.14	Pass	-0.19	Pass	
0037	11:22 am	8.0* $\delta_{0.3q}$	228	37.54	-0.14	-0.07	-0.38	Pass	-0.20	Pass	
0038	11:25 am	8.5* $\delta_{0.3g}$	242	40.32	-0.06	0.13	-0.15	Pass	0.32	Pass	
0040*	11:32 am	$9.0^* \delta_{0.3 g}$	257	40.79	-0.03	0.06	-0.09	Pass	0.14	Pass	
0041	11:33 am	$9.5^*~\delta_{0.3~\mathrm{g}}$	270	44.81	-0.13	-0.07	-0.28	Pass	-0.16	Pass	

Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5*δ_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*δ_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Lateral Stability Test Series No. 2 - Clockwise Initial Steer Direction

	Clock	Commar		111100 111	itiai Otoc	Direction		RR	Y	RR
	Time	Steering Wheel			Yaw Rates		at 1.0 sec after		at 1.75 sec after	
		Angle		(degrees/sec)		COS		cos		
	(1.5 - 5)	(degrees)		,		[<u><</u> 35%]		[<u><</u> 20%]		
Maneuver #	min between each test run)	Scalar	Angle	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 ext{sec}}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/ Fail	%	Pass/ Fail
0042	11:36 am	1.5* $\delta_{0.3 g}$	43	-12.67	0.12	0.02	-0.95	Pass	-0.12	Pass
0043	11:39 am	$2.0^* \delta_{0.3 g}$	57	-16.81	0.15	0.04	-0.90	Pass	-0.21	Pass
0044	11:42 am	$2.5* \delta_{0.3 g}$	71	-20.44	0.20	0.08	-0.99	Pass	-0.41	Pass
0045	11:45 am	$3.0^* \delta_{0.3 g}$	86	-24.60	0.01	-0.14	-0.02	Pass	0.56	Pass
0046	11:48 am	$3.5^* \delta_{0.3 g}$	100	-28.72	0.05	-0.09	-0.19	Pass	0.31	Pass
0047	11:51 am	$4.0^* \delta_{0.3 g}$	114	-29.29	0.13	0.02	-0.46	Pass	-0.08	Pass
0048	11:54 am	4.5* $\delta_{0.3 g}$	128	-30.47	0.23	0.20	-0.75	Pass	-0.67	Pass
0049	11:57 am	$5.0^* \delta_{0.3 g}$	143	-33.64	0.12	0.13	-0.36	Pass	-0.39	Pass
0050	12:00 pm	5.5* δ _{0.3 g}	157	-36.52	0.24	0.19	-0.65	Pass	-0.53	Pass
0051	12:03 pm	6.0* $\delta_{0.3 g}$	171	-38.32	0.13	0.10	-0.33	Pass	-0.26	Pass
0052	12:06 pm	6.5* $\delta_{0.3 g}$	185	-34.27	0.05	-0.03	-0.16	Pass	0.10	Pass
0053	12:09 pm	$7.0^* \delta_{0.3 g}$	200	-35.50	0.07	0.00	-0.18	Pass	0.00	Pass
0054	12:14 pm	$7.5^* \delta_{0.3 g}$	214	-36.47	0.16	0.03	-0.44	Pass	-0.07	Pass
0055	12:19 pm	8.0* $\delta_{0.3 g}$	228	-37.34	0.19	0.06	-0.52	Pass	-0.16	Pass
0056	12:22 pm	8.5* $\delta_{0.3 g}$	242	-42.05	0.29	0.10	-0.69	Pass	-0.23	Pass
0057	12:25 pm	$9.0^* \delta_{0.3 g}$	257	-43.90	0.17	0.15	-0.39	Pass	-0.35	Pass
0058	12:28 pm	$9.5^* \delta_{0.3 g}$	270	-38.26	0.05	-0.03	-0.13	Pass	0.07	Pass

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated 6.5*δ_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*δ_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

Rim-to-pavement contact	Yes <u>X</u> No
Tire debeading	Yes <u>X</u> No
Loss of pavement contact of vehicle tires	Yes <u>X</u> No
Did the test driver experience any vehicle	Yes <u>X</u> No
loss of control or spinout?	

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiveness - Lateral Displacement

		Commanded Steering	•	Calculated Latera	al Displacement ¹
Manarii	Initial Ctags	$(5.0^*\delta_{0.3 \text{ q, overall}})$		D' 1	Ī
Maneuver #	Initial Steer Direction	Scalar	Angle (degrees)	Distance (m)	Pass/Fail
0031	Counter Clockwise	5.0* δ _{0.3 g}	143	2.67	Pass
0032	Counter Clockwise	5.5* $\delta_{0.3 \text{ g}}$	157	2.77	Pass
0033	Counter Clockwise	$6.0^{\star}~\delta_{0.3~\mathrm{g}}$	171	2.75	Pass
0034	Counter Clockwise	$6.5^*~\delta_{0.3~ ext{q}}$	185	2.88	Pass
0035	Counter Clockwise	$7.0^* \delta_{0.3 g}$	200	2.87	Pass
0036	Counter Clockwise	$7.5^* \delta_{0.3 g}$	214	3.01	Pass
0037	Counter Clockwise	$8.0^*~\delta_{0.3~\mathrm{g}}$	228	3.10	Pass
0038	Counter Clockwise	8.5* $\delta_{0.3 \text{ g}}$	242	3.19	Pass
0040	Counter Clockwise	$9.0^* \delta_{0.3 g}$	257	3.20	Pass
0041	Counter Clockwise	9.5^* $\delta_{0.3~g}$	270	3.03	Pass
0049	Clockwise	5.0* δ _{0.3 g}	143	2.73	Pass
0050	Clockwise	5.5* δ _{0.3 g}	157	2.86	Pass
0051	Clockwise	6.0* δ _{0.3 q}	171	2.92	Pass
0052	Clockwise	6.5* δ _{0.3 q}	185	3.05	Pass
0053	Clockwise	$7.0^* \delta_{0.3 g}$	200	3.08	Pass
0054	Clockwise	7.5* δ _{0.3 g}	214	3.12	Pass
0055	Clockwise	$8.0^*~\delta_{0.3~\mathrm{g}}$	228	3.10	Pass
0056	Clockwise	8.5* δ _{0.3 q}	242	3.15	Pass
0057	Clockwise	9.0* δ _{0.3 g}	257	3.27	Pass
0058	Clockwise	9.5* δ _{0.3 g}	270	3.24	Pass
		1			

^{1.} Lateral displacement should be ≥ 1.83 m (6 ft) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less; and ≥ 1.52 m (5ft) for vehicles with a GVWR greater than 3,500 kg (7,716 lb).

DATA	INDICA.	TFS C(JMPL	IANCE:

PASS/FAIL PASS

REMARKS: *On Maneuver #0040, the time indicates more than 5 minute from previous maneuver since Maneuver #0039 was discarded due to steering controller malfunction.

RECORDED BY: _	Alan Ida	DATE:	8-23-11
APPROVED BY:	Ken Webster	DATE:	8-25-11

DATA SHEET 9 (Sheet 1 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	Kia / Soul / MPV		
VEHICLE NHTSA No.: CB0513	TEST DATE:	8-24-11	
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation:	Disconnect the Rig	ht Front wheel speed	
sensor connector.			
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated aft necessary the vehicle is driven at least 2 minu	tes.	tem is activated and if YesNo	
Time for telltale to illuminate after ignition systems 0 Seconds (must be within 2 min		_PassFail	
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking syste driven at least 2 minutes.		ecessary the vehicle is YesNo	
Time for telltale to extinguish after ignition sys	em is activated and v	vehicle speed of	
48± 8 km/h (30± 5mph) is reached. 0 Seconds (must be within 2 minu		PassFail	
DATA INDICATES COMPLIANCE:	PASS	/FAIL <u>PASS</u>	
REMARKS: The vehicle did not require driving to illuminate the wheel speed sensor was disconnected, illuminated. After the wheel speed sensor comalfunction telltales had extinguished.	the ESC and ABS	malfunction telltales	
RECORDED BY: Alan Ida APPROVED BY: Ken Webster	DATE		

DATA SHEET 9 (Sheet 2 of 2) MALFUNCTION WARNING TEST

VEHICLE MAKE/MODEL/BODY STYLE:	Kia / Soul / MP	V	
VEHICLE NHTSA No.: CB0513	TEST DATE:_	8-24-11	
METHOD OF MALFUNCTION SIMULATION: Describe method of malfunction simulation:	Disconnect the	brake peda	I stop switch
connector.			
MALFUNCTION TELLTALE ILLUMINATION: Telltale illuminates and remains illuminated aft necessary the vehicle is driven at least 2 minu	tes.	g system is ac	
Time for telltale to illuminate after ignition syste 0 Seconds (must be within 2 min		X Pass _	Fail
ESC SYSTEM RESTORATION: Telltale extinguishes after ignition locking syste driven at least 2 minutes.		d if necessary X Yes	
Time for telltale to extinguish after ignition syst 0 Seconds (must be within 2 minu			Fail
DATA INDICATES COMPLIANCE:		PASS/F	AIL <u>PASS</u>
REMARKS: The vehicle did not require driving to illuminate the brake pedal stop switch connector was illuminated. After the brake pedal stop switch contelltale extinguished.	removed, the	ESC malfur	nction telltale
RECORDED BY: Alan Ida APPROVED BY: Ken Webster			<u>8-24-11</u> 8-25-11

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION

4.0	ILOI LQUII	141 F14 1 F14	OI AIID	OALIBITAT	ION INFORMA	11011	
Туре	Output	Range	Resolut ion	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-60psi	0.5 psi	±0.5% of applied pressure	Moroso Model: 89562 0-60psi	_ <u>N/A</u> _	By: <u>TRC</u> Date: <u>6-14-11</u> Due: <u>9-12-11</u>
Platform Scales	Vehicle Total, Wheel, and Axle Load	0-2500 lb per each of four pads	0.5 lb	±1.0% of applied load	Mettler Toledo Model: JXGA1000	5225831- 5JC	By: <u>Mettler Toledo</u> Date: <u>8-11-11</u> Due: <u>11-11-11</u>
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	_60303_	By: <u>ATI-Heitz</u> Date: <u>2-18-11</u> Due: <u>2-18-12</u>
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelero meters: ±2 g Angular Rate Sensors: ±100 deg/ s	Acceler ometers : ≤10 ug Angular Rate Sensors : ≤0.004 deg/s	Acceleromet ers: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP- 1	_0768_	By: <u>BEI Tech.</u> Date: <u>1-10-11</u> Due: <u>1-10-12</u>
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph	0.009 mph	±0.25% of full scale	A-DAT Corp. Radar Model: DRS-6 Display Model: RD-2	<u>1400603</u>	By: <u>B+S Multidata</u> Date: <u>2-14-11</u> Due: <u>2-14-12</u>
Ultrasonic Distance Measuring System	Left and Right Side Vehicle Height	5-24 inches	0.01 inches	±0.25% of maximum distance	Massa Products Corporation Model: M- 5000/220	_ <u>104619</u> <u>& 104613</u>	By: Consumers Energy Laboratory Services Date: 1-20-11 Due: 1-20-12
Data Acquisition System [Amplify, Anti- Alias, and Digitize]	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	Sufficient to meet or exceed individual sensors	200 Hz	Sufficient to meet or exceed individual sensors	Dewetron Sidehand DAS Model: DA-121-16 Digitizer Model: Dewe-Orion- 1616-100 Amplifier/AntiAli asing: MDAQ- FILT-10-S	<u>12060</u> <u>1105</u>	By: <u>Dewetron</u> Date: <u>12-02-10</u> Due: <u>12-02-11</u>
Load Cell	Vehicle Brake Pedal Force	0-300 lb	1 lb	±0.05% of full scale	DATRON Model: DTM- LPA	<u>4970-</u> 1103	By: TRC Date: per test Due: per test
Coordinate Measurement Machine	Inertial Sensing System Location	0-10 feet	0.001 inch	±0.003% of full scale	FARO International Model: Faro Arm N10	_ <u>U12-05-08-</u> <u>07116*</u> _	By: <u>FARO</u> Date: <u>12-27-10</u> Due: <u>12-27-11</u>
Outriggers	No output. Safety Item.	N/A	N/A	N/A	NHTSA Titanium Outriggers Model: Docket 2007-27662-11	N/A	N/A

^{*}Note: TRC Inc.'s FARO Arm was sent out for calibration at the time of the test, therefore, GFP was utilized from VRTC.

5.0 PHOTOGRAPHS

- 5.1 ¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE
- 5.2 34 REAR VIEW FROM RIGHT SIDE OF VEHICLE
- 5.3 VEHICLE CERTIFICATION LABEL
- 5.4 TIRE AND LOADING INFORMATION LABEL
- 5.5 WINDOW STICKER (MONRONEY LABEL)
- 5.6 ESC OFF TELLTALE
- 5.7 ESC MALFUNCTION TELLTALE
- 5.8 ESC OFF CONTROL
- 5.9 3/4 FRONT VIEW TEST VEHICLE INSTRUMENTED
- 5.10 34 REAR VIEW TEST VEHICLE INSTRUMENTED
- 5.11 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM
- 5.12 STEERING CONTROLLER BATTERY BOX
- 5.13 INERTIA MEASUREMENT UNIT
- 5.14 VEHICLE SPEED SENSOR
- 5.15 BODY ROLL SENSOR (DRIVER SIDE)
- 5.16 BODY ROLL SENSOR (PASSENGER SIDE)
- 5.17 BRAKE PEDAL FORCE TRANSDUCER

5.1 ¾ FRONT VIEW FROM LEFT SIDE OF VEHICLE

5.2 ¾ REAR VIEW FROM RIGHT SIDE OF VEHICLE

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513 AUGUST 2011

TIRE AND LOADING INFORMATION RENSEIGNEMENTS SUR LES PNEUS ET LE CHARGEMENT

SEATING CAPACITY NOMBRE DE PLACES

TOTAL 5

FRONT **AVANT**

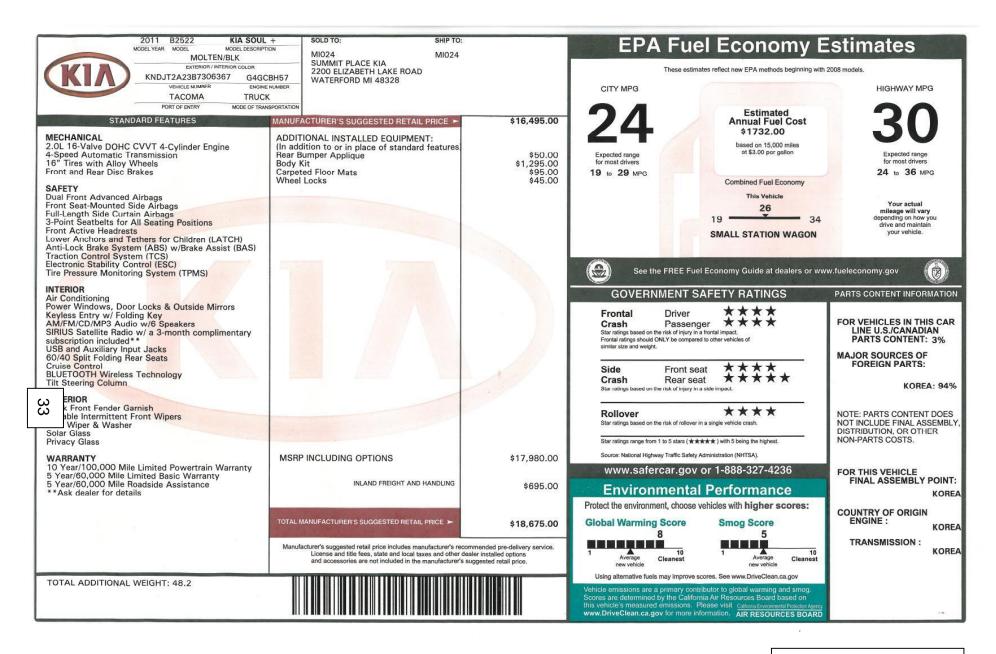
REAR

ARRIÈRE

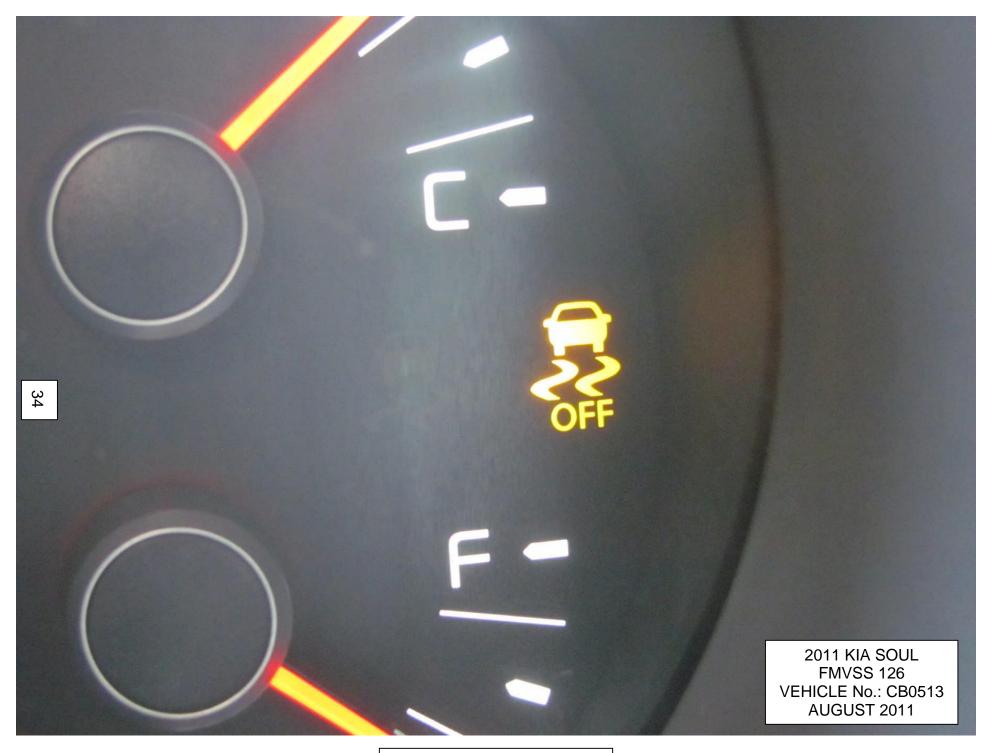
The combined weight of occupants and cargo should never exceed Le poids total des occupants et du chargement ne doit jamais dépasser

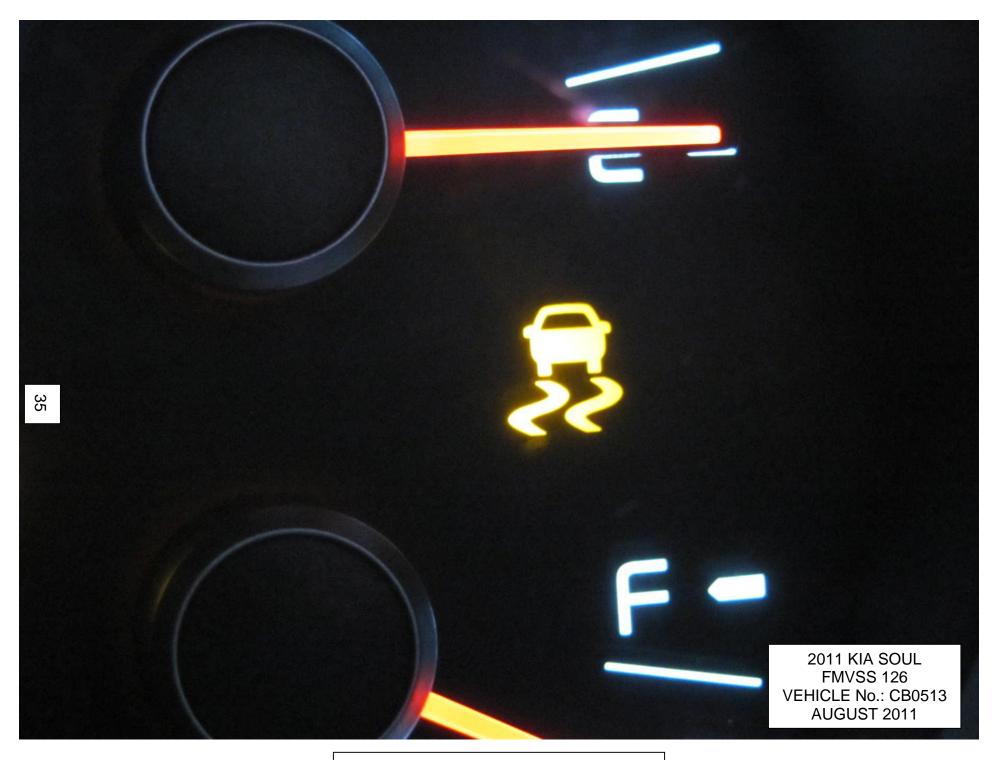
385

kg or kg ou


849

lbs. lb.


	TIRE PNEU	SIZE DIMENSIONS	COLD TIRE PRESSURE PRESSION DES PNEUS À FROID
I	FRONT AVANT	P205/55R16	230KPA, 33PSI
I	REAR ARRIÈRE	P205/55R16	230KPA, 33PSI
	SPARE DE SECOURS	T125/80D15	420kPa, 60psi

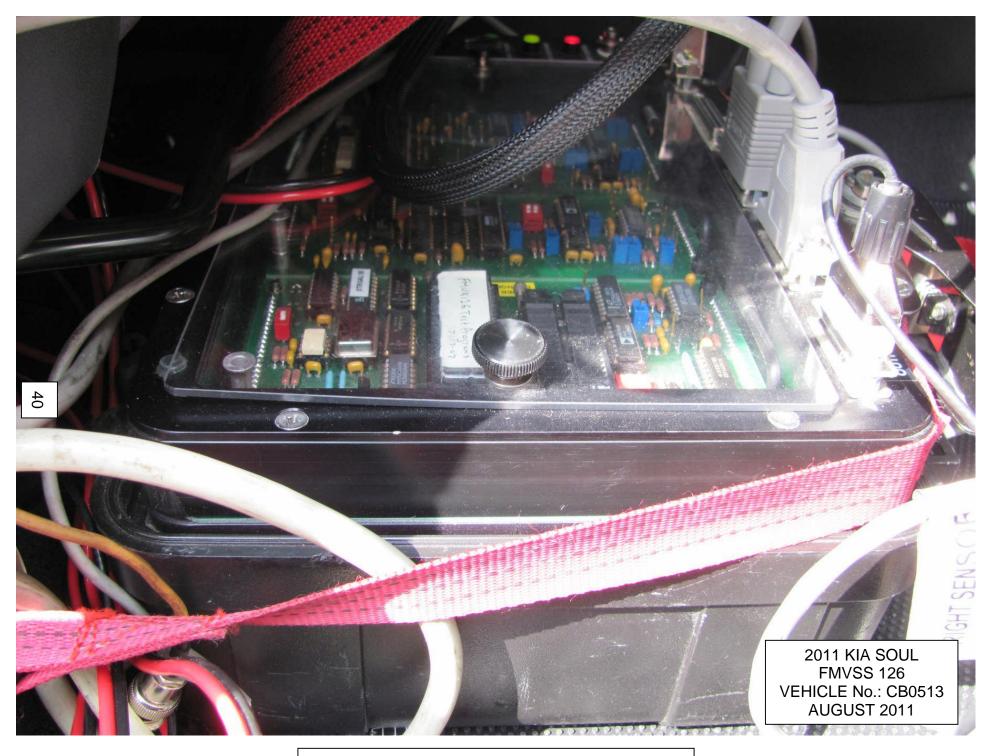

INFORMATION

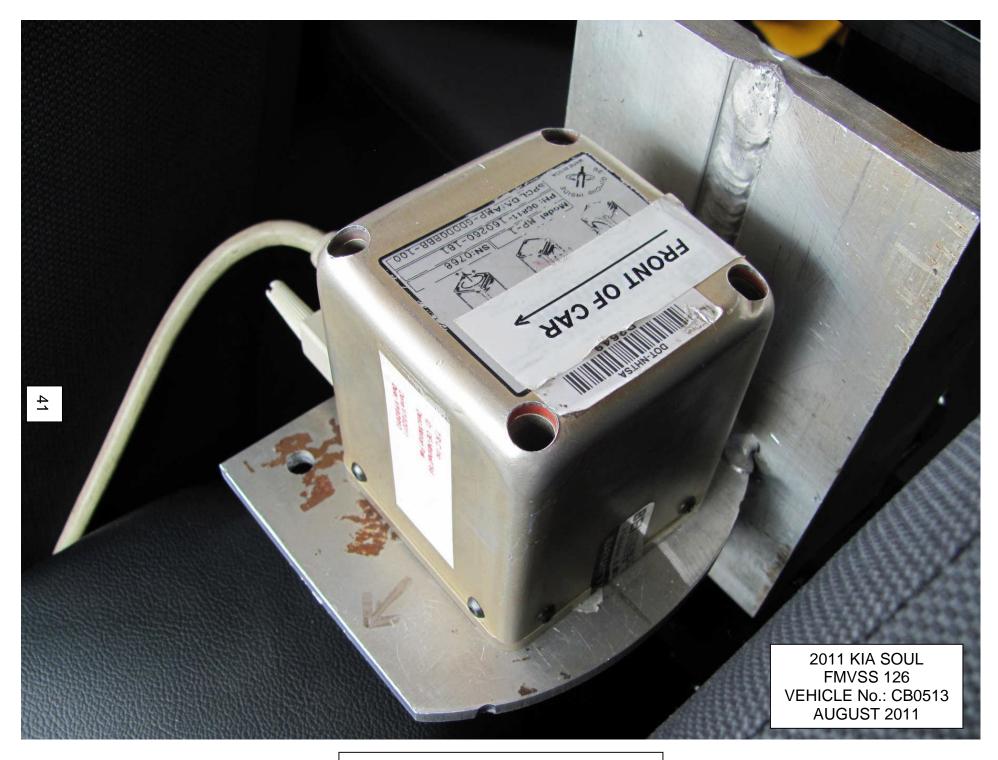
2011 KIA SOUL **FMVSS 126** VEHICLE No.: CB0513 **AUGUST 2011**

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513 AUGUST 2011

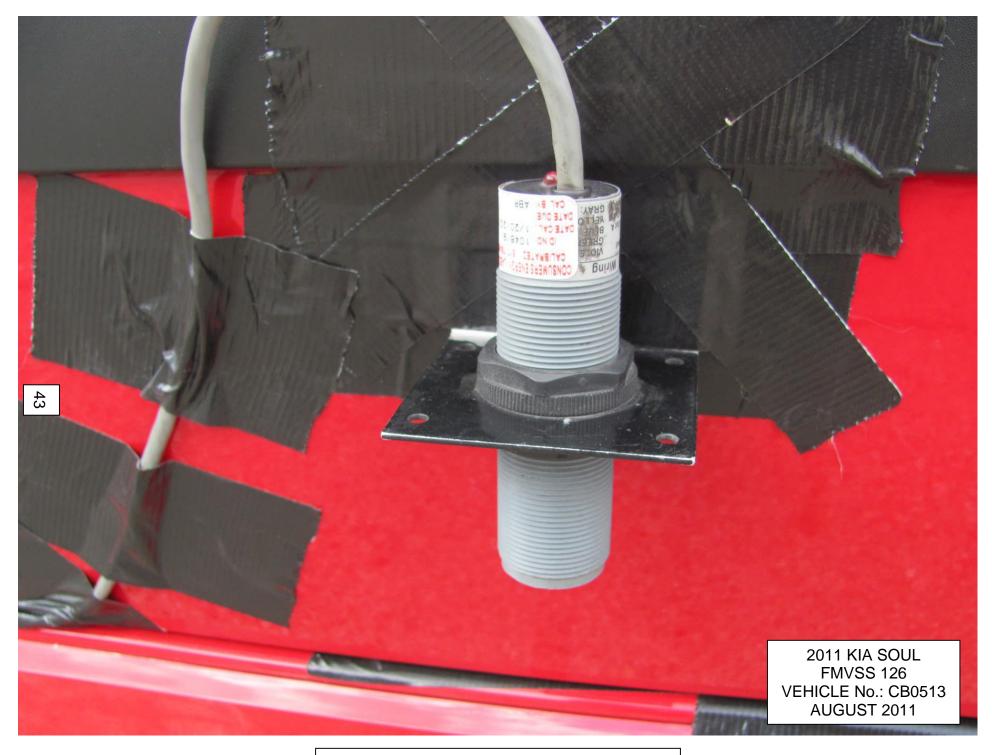
5.7 ESC MALFUNCTION TELLTALE

5.8 ESC OFF CONTROL


5.9 ¾ FRONT VIEW - TEST VEHICLE INSTRUMENTED


5.10 3/4 REAR VIEW - TEST VEHICLE INSTRUMENTED

5.11 STEERING WHEEL CONTROLLER AND DATA ACQUISITION SYSTEM

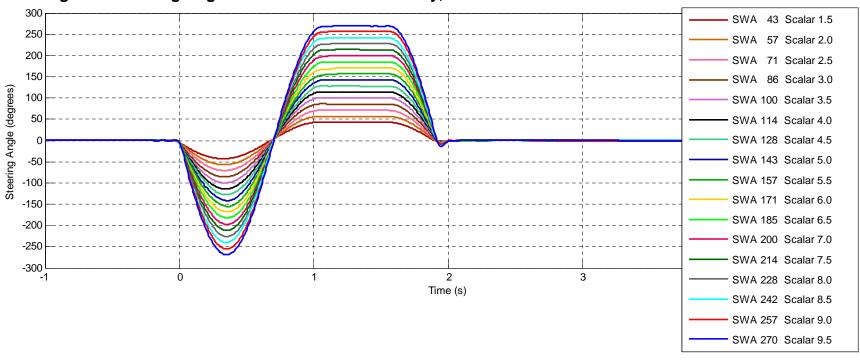

5.12 STEERING CONTROLLER BATTERY BOX

5.13 INERTIA MEASUREMENT UNIT

5.14 VEHICLE SPEED SENSOR

5.15 BODY ROLL SENSOR (DRIVER SIDE)

5.16 BODY ROLL SENSOR (PASSENGER SIDE)



5.17 BRAKE PEDAL FORCE TRANSDUCER

6.0 DATA PLOTS

Figure 1. Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests
 Figure 2. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests
 Figure 3. Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests
 Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests

Figure 1. Steering Angle and Yaw Rate Time History, Counter-Clockwise Initial Steer Tests

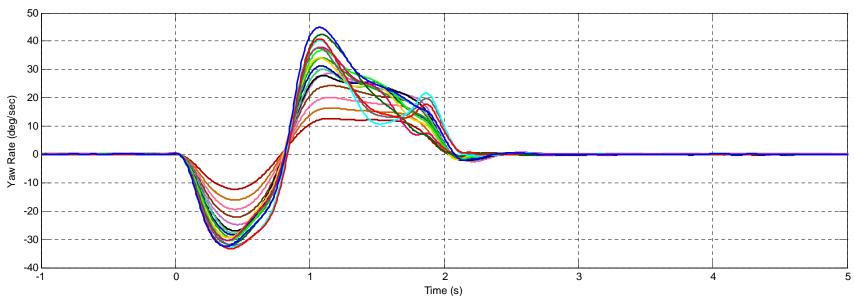


Figure 2. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Counter-Clockwise Initial Steer Tests

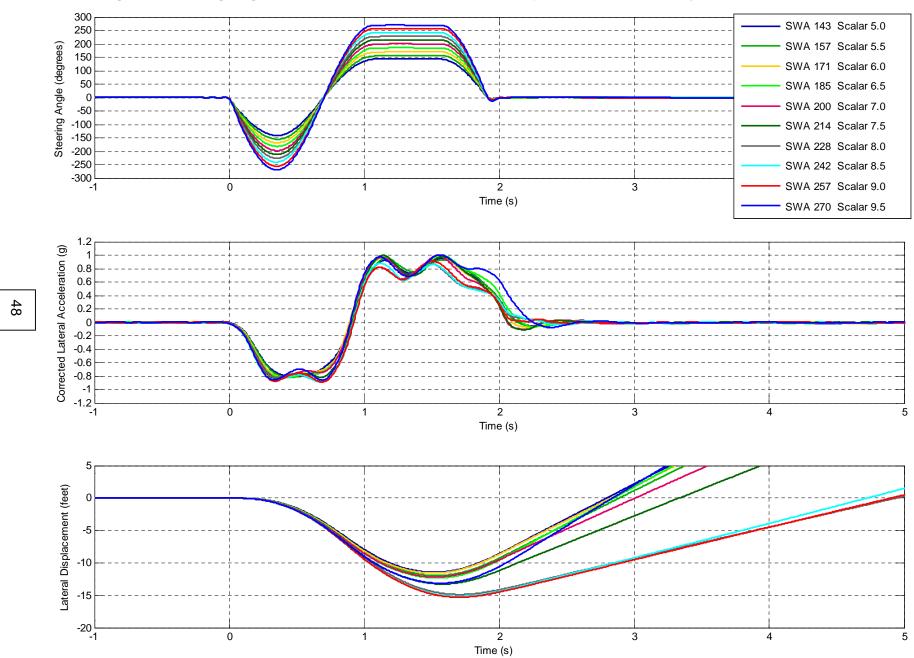
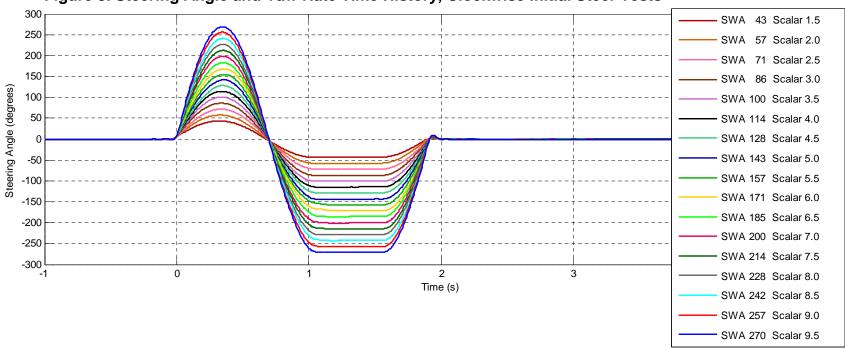



Figure 3. Steering Angle and Yaw Rate Time History, Clockwise Initial Steer Tests

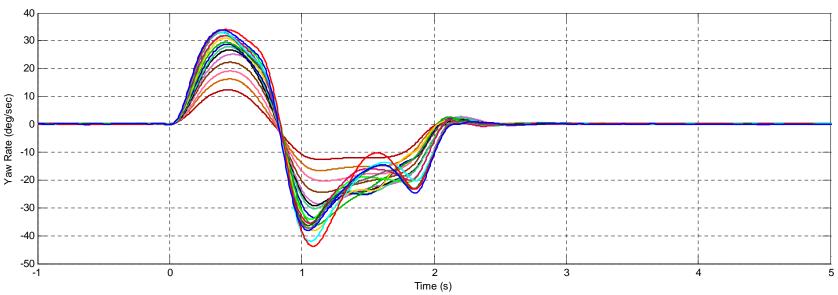
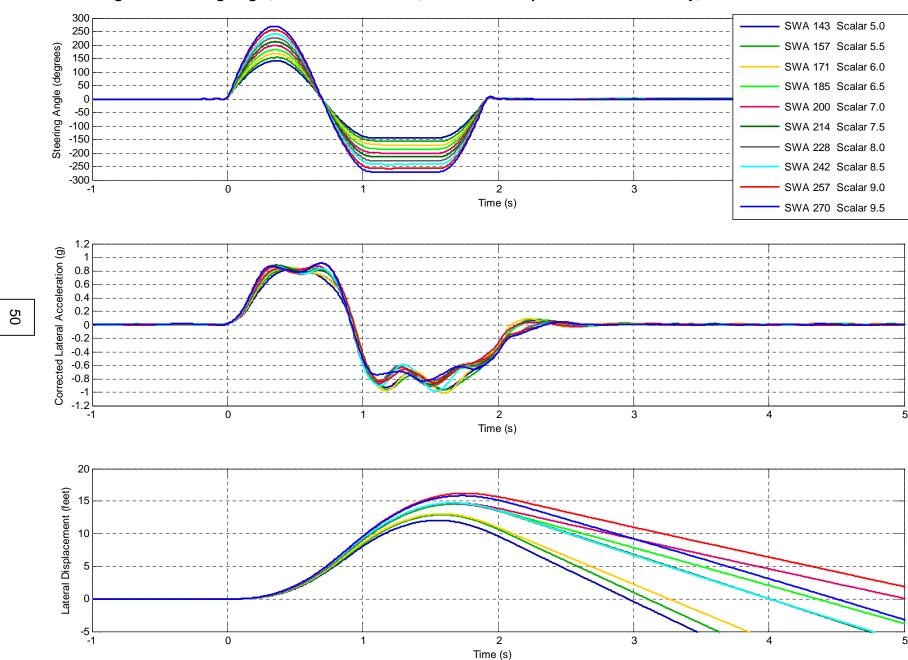
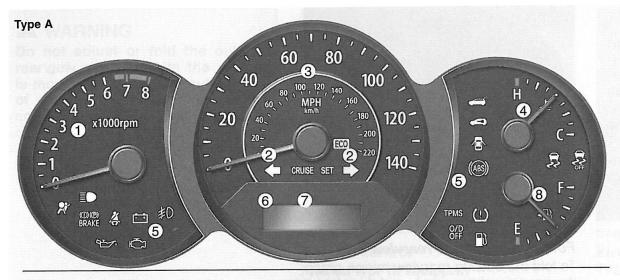
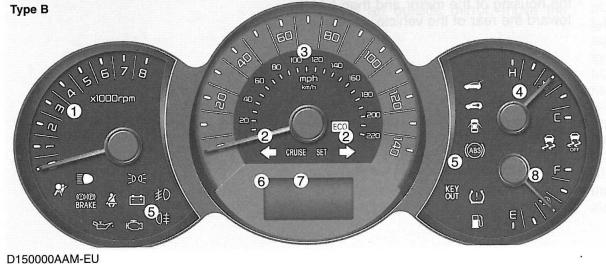



Figure 4. Steering Angle, Lateral Acceleration, and Lateral Displacement Time History, Clockwise Initial Steer Tests


7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES


7.1 OWNER'S MANUAL PAGES

Features of your vehicle

INSTRUMENT CLUSTER

- 1. Tachometer
- 2. Turn signal indicators
- 3. Speedometer
- 4. Engine temperature gauge
- 5. Warning and indicator lights
- 6. Shift position indicator*
 (Automatic transaxle only)
- 7. Odometer/Tripmeter*
- 8. Fuel gauge
- * if equipped

* The actual cluster in the vehicle may differ from the illustration. For more details refer to the "Gauges" in the next pages.

OAM049030N-1/OAM040130N

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513 AUGUST 2011

E070500AHM-EU

Electronic stability control (ESC) (If equipped)

The Electronic Stability control (ESC) system is designed to stabilize the vehicle during cornering maneuvers. ESC checks where you are steering and where the vehicle is actually going. ESC applies the brakes on individual wheels and intervenes with the engine management system to stabilize the vehicle.

A WARNING

Never drive too fast according to the road conditions or too quickly when cornering. Electronic stability control (ESC) will not prevent accidents. Excessive speed in turns, abrupt maneuvers and hydroplaning on wet surfaces can still result in serious accidents. Only a safe and attentive driver can prevent accidents by avoiding maneuvers that cause the vehicle to lose traction. Even with ESC installed, always follow all the normal precautions for driving - including driving at safe speeds for the conditions.

The Electronic Stability Control (ESC) system is an electronic system designed to help the driver maintain vehicle control under adverse conditions. It is not a substitute for safe driving practices. Factors including speed, road conditions and driver steering input can all affect whether ESC will be effective in preventing a loss of control. It is still your responsibility to drive and corner at reasonable speeds and to leave a sufficient margin of safety.

When you apply your brakes under conditions which may lock the wheels, you may hear a "tik-tik" sound from the brakes, or feel a corresponding sensation in the brake pedal. This is normal and it means your ESC is active.

* NOTICE

A click sound may be heard in the engine compartment when the vehicle begins to move after the engine is started. These conditions are normal and indicate that the Electronic Stability Control System is functioning properly.

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513 AUGUST 2011

Driving your vehicle

F070501AUN-EU

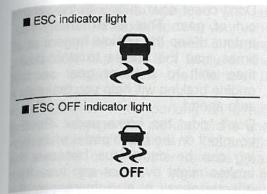
ESC ON condition

- When the ignition is turned ON, ESC and ESC OFF indicator lights illuminate for approximately 3 seconds, then ESC is turned on.
- Press the ESC OFF button for at least half a second after turning the ignition ON to turn ESC off. (ESC OFF indicator will illuminate). To turn the ESC on, press the ESC OFF button (ESC OFF indicator light will go off).
- When starting the engine, you may hear a slight ticking sound. This is the ESC performing an automatic system self-check and does not indicate a problem.

When operating

When the ESC is in operation, the ESC indicator light blinks.

- When the Electronic Stability Control is operating properly, you can feel a slight pulsation in the vehicle. This is only the effect of brake control and indicates nothing unusual.
- When moving out of the mud or driving on a slippery road, pressing the accelerator pedal may not cause the engine rpm (revolutions per minute) to increase.


E070502AUN-EU

ESC operation off ESC OFF state

- To cancel ESC operation, press the ESC OFF button (ESC OFF indicator light illuminates).
- If the ignition switch is turned to LOCK position when ESC is off, ESC remains off. Upon restarting the engine, the ESC will automatically turn on again.

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513 AUGUST 2011

F070503AAM-EU

Indicator light

When the ignition switch is turned ON, the indicator light illuminates, then goes off if ESC system is operating normally. The ESC indicator light blinks whenever ESC is operating and illuminates when ESC fails to operate.

The ESC OFF indicator light comes on when the ESC is turned off with the button.

A CAUTION

Driving with varying tire or wheel sizes may cause the ESC system to malfunction. When replacing tires, make sure they are the same size as your original tires.

WARNING

The Electronic Stability Control system is only a driving aid; use precautions for safe driving by slowing down on curved, snowy, or icy roads. Drive slowly and don't attempt to accelerate whenever the ESC indicator light is blinking, or when the road surface is slippery.

E070504AAM-EU

ESC OFF usage

When driving

- It's a good idea to keep the ESC turned on for daily driving whenever possible.
- To turn ESC off while driving, press the ESC OFF button while driving on a flat road surface.

A WARNING

Never press the ESC OFF button while ESC is operating (ESC indicator light blinks).

If ESC is turned off while ESC is operating, the vehicle may slip out of control.

* NOTICE

- When operating the vehicle on a dynamometer, ensure that the ESC is turned off (ESC OFF light illuminated). If the ESC is left on, it may prevent the vehicle speed from increasing, and result in false diagnosis.
- Turning the ESC off does not affect ABS or brake system operation.

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513

AUGUST 2011

SPECIAL DRIVING CONDITIONS

E110100AHM

Hazardous driving conditions

When hazardous driving conditions are encountered such as water, snow, ice, mud, sand, or similar hazards, follow these suggestions:

- Drive cautiously and allow extra distance for braking.
- · Avoid sudden braking or steering.
- When braking with non-ABS brakes pump the brake pedal with a light upand-down motion until the vehicle is stopped.

A WARNING - ABS

Do not pump the brake pedal on a vehicle equipped with ABS.

- If stalled in snow, mud, or sand, use second gear. Accelerate slowly to avoid spinning the drive wheels.
- Use sand, rock salt, tire chains, or other non-slip material under the drive wheels to provide traction when stalled in ice, snow, or mud.

MARNING - Downshifting

Downshifting with an automatic transaxle, while driving on slippery surfaces can cause an accident. The sudden change in tire speed could cause the tires to skid. Be careful when downshifting on slippery surfaces.

E170800AAM

Reducing the risk of a rollover

This multi-purpose passenger vehicle is defined as a Crossover Utility Vehicle (CUV). CUV's have higher ground clearance and a narrower track to make them capable of performing in a wide variety of road applications. Specific design characteristics give them a higher center of gravity than ordinary vehicles. An advantage of the higher ground clearance is a better view of the road, which allows you to anticipate problems. They are not designed for cornering at the same speeds as conventional passenger vehicles. Due to this risk, driver and passengers are strongly recommended to buckle their seat belts. In a rollover crash, an unbelted person is more likely to die than a person wearing a seat belt. There are steps that a driver can make to reduce the risk of a rollover. If at all possible avoid sharp turns or abrupt maneuvers. do not load your roof rack with heavy cargo, and never modify your vehicle in any way.

> 2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513 AUGUST 2011

WARNING - Rollover

As with other Crossover Utility Vehicle (CUV), failure to operate this vehicle correctly may result in loss of control, an accident or vehicle rollover.

- Utility vehicles have a significantly higher rollover rate than other types of vehicles.
- Specific design characteristics (higher ground clearance, narrower track, etc.) give this vehicle a higher center of gravity than ordinary vehicles.
- A CUV is not designed for cornering at the same speeds as conventional vehicles.
- Avoid sharp turns or abrupt maneuvers.
- In a rollover crash, an unbelted person is significantly more likely to suffer severe or fatal injury than a person wearing a seatbelt.

E170600AHM

WARNING

Your vehicle is equipped with tires designed to provide safe ride and handling capability. Do not use a size and type of tire and wheel that is different from the one that is originally installed on your vehicle. It can affect the safety and performance of your vehicle, which could lead to steering failure or rollover and serious injury. When replacing the tires, be sure to equip all four tires with the tire and wheel of the same size, type, tread, brand and load-carrying capacity. If you nevertheless decide to equip your vehicle with any tire/wheel combination not recommended by KIA for off road driving, you should not use these tires for highway driving.

E110200AAM-EU

Rocking the vehicle

If it is necessary to rock the vehicle to free it from snow, sand, or mud, first turn the steering wheel right and left to clear the area around your front wheels. Then, shift back and forth between 1st (First) and R (Reverse) in vehicles equipped with a manual transaxle or R (Reverse) and any forward gear in vehicles equipped with an automatic transaxle. Do not race the engine, and spin the wheels as little as possible. If you are still stuck after a few tries, have the vehicle pulled out by a tow vehicle to avoid engine overheating and possible damage to the transaxle.

A CAUTION

Prolonged rocking may cause engine overheating, transaxle damage or failure, and tire damage.

2011 KIA SOUL FMVSS 126 VEHICLE No.: CB0513

HICLE No.: CB0513 AUGUST 2011

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRA	ACT NO	DTNH22-08	-D-00097	_ DATE: _	8/17/11
FROM: _	Auto	motive Allies			
TO: <u>TI</u>	RC				
PURPOS	SE: (X) Initial eceipt	() Recei via Transfer	ved	() Present vehicle condition
MODEL	YEAR/MAI	KE/MODEL/B	ODY STYLE: 20	11 / Kia / So	ul / MPV
MANUFA	ACTURE D	OATE: 04/1	1 NHT	SA NO.: <u>C</u>	CB0513
BODY C	OLOR:	Red	VIN: <u>KN</u>	DJT2A23B7	306367
ODOME	TER REA	DING:1	39 miles	GVW	R: <u>1,760</u> KG
			<u>/ leased</u> DEAL 101, Burbank, CA		: Automotive Allies,
X TH X TH X TH CO X PH X PH X PH X PH X HN SH FL M TH	EHICLE IRES AND V HERE ARE HE VEHICL ONDITION HE GLOVE ONSUMER ROPER FUI LACE VEHIC ISPECT TH EATS, DOC UNCTIONAL ISADJUSTN EST PROG	VHEEL RIMS AND DENTS OF E HAS BEEN FE BOX CONTAIN INFORMATION EL FILLER CALCE IN STORA E VEHICLE'S DRS, ETC., TO PER THE MENT, OR OTHERAM OR TE	ARE NEW AND THE ROTHER INTERIOR PROPERLY PREPARED ON AND EXTRA SERVICE AREA INTERIOR AND EXTRADE OF CONFIRM THAT MANUFACTURER SHER UNUSUAL COST RESULTS SH	E SAME AS I OR OR EXTER ARED AND IS MANUAL, WA T OF KEYS N THE TEST Y XTERIOR, IN T EACH SYS S SPECIFIC NDITION THA ALL BE RE	RIOR FLAWS IN RUNNING RRANTY DOCUMENT,
RECORI	DED BY: _	Alan Ida		DATE:_	8-17-11 8-25-11

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO. <u>DTNH22-08-D-00097</u> DATE: <u>8/24/11</u>								
MODEL YEAR/MAKE/MODEL/BODY STYLE: 2011 / Kia / Soul / MPV								
MANUFACTURE DATE: 04/11 NHTSA NO.: CB0513								
BODY COLOR: Red VIN: KNDJT2A23B7306367								
ODOMETER READING: <u>201</u> miles GVWR: <u>1,760</u> KG								
LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126, 135								
X THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS								
X THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION								
X THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS								
X PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE								
REMARKS:								
Equipment that is no longer on the test vehicle as noted on Vehicle Arrival Condition Report: None.								
Explanation for equipment removal: N/A								
Test Vehicle Condition: Like new.								
RECORDED BY: Alan Ida DATE: 8-24-11 APPROVED BY: Ken Webster DATE: 8-25-11								

7.4 SINE WITH DWELL TEST RESULTS

2011 Kia Soul

61

NHTSA No.: CB0513

Date Created 23-Aug-11

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)

File	SWA @ 5deg Ct	MES	Time@5deg	cos	Time@COS	MOS	Time@MOS	YRR1(%)	YR1 (deg/sec)	YRR1 Ct	YRR175(%)	YR175 (deg/sec)
0024	619	50.210	3.088	1000	4.991	756	3.771	-1.529	-0.192	1200	-1.345	-0.169
0025	617	50.209	3.078	999	4.986	755	3.767	-1.158	-0.190	1199	-0.360	-0.059
0026	617	50.379	3.077	999	4.989	756	3.770	-0.461	-0.093	1199	-0.061	-0.012
0027	616	50.421	3.070	999	4.985	755	3.767	-0.664	-0.160	1199	-0.177	-0.043
0028	616	50.460	3.070	999	4.988	755	3.768	-0.203	-0.058	1199	-0.117	-0.033
0029	615	50.373	3.067	999	4.986	755	3.767	-0.776	-0.216	1199	-0.161	-0.045
0030	615	50.324	3.066	999	4.986	755	3.768	-0.474	-0.142	1199	-0.408	-0.122
0031	615	50.332	3.066	999	4.987	755	3.768	-0.292	-0.091	1199	-0.486	-0.152
0032	614	50.406	3.064	998	4.985	755	3.767	-0.174	-0.059	1198	-0.323	-0.110
0033	615	50.437	3.067	999	4.988	756	3.770	-0.140	-0.048	1199	-0.201	-0.069
0034	614	50.015	3.064	998	4.984	755	3.768	-0.536	-0.197	1198	-0.629	-0.231
0035	614	50.307	3.063	998	4.984	755	3.766	-0.321	-0.121	1198	-0.355	-0.134
0036	615	50.485	3.067	999	4.988	756	3.771	-0.136	-0.058	1199	-0.190	-0.081
0037	614	50.276	3.064	998	4.985	755	3.767	-0.382	-0.144	1198	-0.197	-0.074
0038	615	50.481	3.065	999	4.985	755	3.768	-0.149	-0.060	1199	0.317	0.128
0040	614	50.174	3.065	998	4.984	755	3.767	-0.085	-0.035	1198	0.139	0.057
0041	615	50.187	3.068	999	4.986	756	3.772	-0.284	-0.127	1199	-0.157	-0.070
RIGHT-TO-	LEFT (INITIAL CLOC	CKWISE ST	EER)									
0042	619	50.304	3.087	999	4.989	755	3.769	-0.950	0.120	1199	-0.119	0.015
0043	618	50.300	3.081	999	4.989	755	3.769	-0.896	0.151	1199	-0.211	0.035
0044	616	50.165	3.074	999	4.987	755	3.767	-0.986	0.201	1199	-0.412	0.084
0045	616	50.287	3.071	999	4.987	755	3.767	-0.021	0.005	1199	0.563	-0.139
0046	616	50.250	3.071	999	4.989	755	3.769	-0.191	0.055	1199	0.309	-0.089
0047	615	50.117	3.068	999	4.987	755	3.767	-0.456	0.134	1199	-0.082	0.024
0048	615	50.280	3.067	999	4.987	755	3.768	-0.746	0.227	1199	-0.670	0.204
0049	615	50.048	3.067	999	4.988	755	3.769	-0.359	0.121	1199	-0.390	0.131
0050	614	50.303	3.063	998	4.984	755	3.766	-0.647	0.236	1198	-0.534	0.195
0051	614	50.357	3.064	999	4.986	755	3.767	-0.334	0.128	1199	-0.257	0.099
0052	615	50.080	3.067	999	4.989	755	3.769	-0.160	0.055	1199	0.095	-0.033
0053	615	50.466	3.065	999	4.988	755	3.768	-0.183	0.065	1199	0.001	0.000
0054	615	50.517	3.067	999	4.988	755	3.770	-0.441	0.161	1199	-0.071	0.026
0055	615	50.109	3.065	999	4.986	755	3.768	-0.516	0.193	1199	-0.160	0.060
0056	615	50.321	3.067	999	4.987	755	3.770	-0.695	0.292	1199	-0.229	0.096
0057	615	50.253	3.065	999	4.985	755	3.767	-0.388	0.170	1199	-0.349	0.153
0058	615	50.251	3.065	998	4.985	755	3.768	-0.134	0.051	1198	0.068	-0.026

7.4 SINE WITH DWELL TEST RESULTS

2011 Kia Soul

NHTSA No.: CB0513

Date Created 23-Aug-11

LEFT-TO-RIGHT (INITIAL COUNTER-CLOCKWISE STEER)

File	YRR175 Ct	2nd Yaw Peak(deg/sec)	2nd Yaw Peak Ct	Lat Disp (ft)		1st SWA Peak(deg)	1st SWA Peak Ct	2nd SWA Mean(deg)
0024	1350	12.576	848	-4.072	0.389	43.088	684	42.884
0025	1349	16.407	847	-5.242	0.476	57.095	683	56.881
0026	1349	20.107	847	-6.329	0.544	71.003	684	70.814
0027	1349	24.092	848	-7.239	0.605	85.967	683	85.769
0028	1349	28.360	846	-7.990	0.634	100.094	684	100.034
0029	1349	27.870	834	-8.323	0.683	114.063	683	113.971
0030	1349	29.995	835	-8.553	0.715	127.829	684	127.961
0031	1349	31.165	832	-8.756	0.747	141.846	686	142.861
0032	1348	34.019	832	-9.084	0.753	155.475	686	156.932
0033	1349	34.046	830	-9.013	0.796	167.649	686	170.820
0034	1348	36.728	833	-9.437	0.807	181.908	685	184.845
0035	1348	37.795	830	-9.401	0.810	197.549	685	200.043
0036	1349	42.383	832	-9.874	0.815	211.569	685	213.975
0037	1348	37.541	828	-10.175	0.664	226.149	684	227.895
0038	1349	40.318	830	-10.450	0.728	240.144	684	241.690
0040	1348	40.788	828	-10.488	0.686	255.476	684	256.580
0041	1349	44.806	829	-9.948	0.818	268.594	685	269.636
	•	. CLOCKWISE STEER)						
0042	1349	-12.671	848	3.985	-0.371	43.517	684	43.445
0043	1349	-16.809	845	5.272	-0.468	57.576	684	57.397
0044	1349	-20.444	849	6.244	-0.522	71.478	684	71.334
0045	1349	-24.597	847	7.111	-0.570	86.422	684	86.408
0046	1349	-28.720	846	7.949	-0.603	100.656	684	100.573
0047	1349	-29.292	835	8.348	-0.641	114.602	684	114.597
0048	1349	-30.469	834	8.681	-0.678	128.338	684	128.505
0049	1349	-33.644	835	8.973	-0.719	142.325	686	143.457
0050	1348	-36.524	834	9.376	-0.704	154.774	687	157.376
0051	1349	-38.325	832	9.584	-0.749	168.068	686	171.336
0052	1349	-34.267	829	9.995	-0.649	182.368	685	185.304
0053	1349	-35.495	827	10.117	-0.667	198.155	685	200.549
0054	1349	-36.474	825	10.223	-0.656	212.243	685	214.470
0055	1349	-37.341	826	10.170	-0.653	226.570	685	228.419
0056	1349	-42.048	828	10.330	-0.722	240.958	685	242.339
0057	1349	-43.896	832	10.720	-0.693	256.408	684	257.361
0058	1348	-38.255	825	10.633	-0.607	269.343	684	270.079

7.5 SLOWLY INCREASING STEER TEST RESULTS 2011 Kia Soul NHTSA No.: CB0513

Date Created 23-Aug-11

File	Vehicle	EventPt	DOS	MES [mph]	Mean SPD [mph]	AYcount_3	THETAENCF_3 [degree]	AYCG_CD2_3 [g]	r_squared	ZeroBegin	ZeroEnd
0011	2011 Kia Soul	705	1	50.214	49.816	1126	-28.451	-0.303	0.996	505	705
0012	2011 Kia Soul	704	1	49.850	50.041	1129	-28.702	-0.303	0.997	504	704
0014	2011 Kia Soul	706	1	50.239	50.175	1131	-28.745	-0.299	0.998	506	706
0015	2011 Kia Soul	697	0	50.318	50.053	1117	28.266	0.299	0.996	497	697
0016	2011 Kia Soul	699	0	50.099	50.119	1107	27.672	0.297	0.997	499	699
0018	2011 Kia Soul	700	0	50.378	49.668	1131	29.182	0.303	0.999	500	700
	Averages						28.5	0.301			

Scalars	Steering Angles (de					
	1.5	43				
	2	57				
	2.5	71				
	3	86				
	3.5	100				
	4	114				
	4.5	128				
	5	143				
	5.5	157				
	6	171				
	6.5	185				
	7	200				
	7.5	214				
	8	228				
	8.5	242				
	9	257				
	9.5	270				

7.6 INERTIA SENSOR MEASUREMENTS 2011 Kia Soul

NHTSA No.: CB0513

Device : U12-05-08-07116

device version : 2.24
device certification date : 12/27/10
today is : 8/22/2011
units : Millimeters

Label C_DEVICEPOS001	ActualX	ActualY	ActualZ			
M PLANE001	959.410	-453.443	-296.791			
M_LINE001	656.495	62.515	7.194			
M_ORIGIN_FRT_AXLE_CENTER	0.000	0.000	0.000			
C_COORDSYS001	0.000	0.000	0.000			
M_TIRE_TREAD_CENTER	247.477	98.049	-208.511			
M_INERTIA_PACK	1519.877					
M_ROOF	1703.569					
M_GROUND	1703.377	-128.729	-295.390			
Track Width		1558.925				
Roof Height (relative to ground)			1605.189			
Motion Pak - x-distance (mm) Motion Pak - y-distance (mm) Motion Pak - z-distance (mm)	1519.877	-18.781	897.272			
Motion Pak - 2-distance (IIIII)			091.212			
Motion Pak - x-distance (inches)	59.837					
Motion Pak - y-distance (inches)		-0.739				
Motion Pak - z-distance (inches)			35.326			
x-distance (longitudinal)		erence is the om front axle		centerline. r of vehicle.)		
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)					
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)					