
(12) United States Patent
Joublin et a].

US008631160B2

US 8,631,160 B2
Jan. 14, 2014

(10) Patent N0.:
(45) Date of Patent:

(54) DEVELOPMENT OF (56) References Cited
PARALLEL/DISTRIBUTED APPLICATIONS

U.S. PATENT DOCUMENTS

(75) Inventors: Frank Joublin, Mainhausen (DE); 5 237 691 A 8/1993 R b. t 1
Christian Goerick, Seligenstadt (DE); 537583345 A * 5/1998 707/100
Ant0nell0 Ceravola, Frankfurt am Main 5,999,729 A 12/1999 Tabloski, Jr. et a1.
(DE); Mark Dunn, Miihlheim (DE) 6,311,265 B1 * 10/2001 Beckerle et a1. 712/203

7,076,332 B2 * 7/2006 Cifra et a1. 700/245
, _ 2002/0120601 A1 * 8/2002 Elmendorf et a1. 707/1

(73) Asslgneei Honda Research lnstlFute EumPe 2005/0097561 A1 * 5/2005 Schumacher et a1. . 718/106
GmbH, Offenbach/Mam (DE) 2007/0271562 A1 * 11/2007 Schumacher et a1. 718/100

(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS

patent is extended or adjusted under 35 EP 0780763 Al 6/1997
U.S.C. 154(b) by 2149 days. EP 1026587 A2 8/2000

(21) Appl. N0.: 11/429,383 * Cited by examiner

. Primary Examiner * Asad NaWaZ
22 F l d: M 4 2006 . . .

() 1 e ay ’ Assistant Examiner * NaJeebuddm Ansan

(65) Prior Publication Data (74) Attorney, Agent, or Firm * FenWick & West LLP

Us 2006/0277323 A1 Dec. 7, 2006 (57) ABSTRACT

One embodiment of the present invention provides a method
(30) F0l‘eign Application Priority Data for supporting the development of a parallel/ distributed appli

cation, Wherein the development process comprises a design
May 30, 2005 (EP) 05011616 phase, an implementation phase and a test phase, A script

language can be provided in the design phase for representing
(51) Int_ CL elements of a connectivity graph and the connectivity

G06F 15/16 (200601) between them. In the implementation phase, modules can be
(52) U 5 Cl provided for implementing functionality of the application,

U'SI;C ' 709/248_ 712020 712/227_ 718/100 executors can be provided for de?ning atype ofexecution for
......... .. , 718/102’_ 718/106’_ 718/107’ the modules, and process-instances can be provided for dis

_ _ _ ’ ’ tributing the application over several computing devices. In

(58) Fleld 0f Classl?catlon Search the test phase, abstraction levels can be provided for moni
USPC 718/100, 106, 102, 107; 709/248; wring and testing the application

712/220, 227
See application ?le for complete search history. 25 Claims, 7 Drawing Sheets

Machine-l

\hsuol Sensor 1
MI
m

Visual _

Pre- processing
Purullel — l

Represenlnlion
Com - ulalion Sequential-2

Audio Sensor Aud'o
mi

Sequenliul-J
. T H

Tactile Sensor D0104

Sequential-4 Sequenlinl-S Machine-2

IPrektlselgiedI Prgcdlelined us nus ions
Scene Decision Unto Learned _ Learned

lusks Goals Actions

Machined Parallel-2

Molor Acluutorl

Molor AcluulorZ

Molor Acluulori

US. Patent

20

Jan. 14, 2014 Sheet 1 0f 7 US 8,631,160 B2

Initialization \ U U U parameters
Inputs

% Input
Events

/-14

WJ

Fig. 1

28

D Outputs
Computing —- [
Module -1

:;> Output
:-> Events

L_\ _,18
10

Initialization

24 \1
Input Gate :;'\{

parameters

U U U f 26
Data

Module MM Output Fields

Fig. 2

22

US. Patent Jan. 14, 2014 Sheet 2 017 US 8,631,160 B2

Fig. 3

Left Image Sdata 1
———————->

Right Image VIsuaI Processmg Sdata 2

Fig.6

US. Patent Jan. 14, 2014 Sheet 3 017 US 8,631,160 B2

CM1 > DM1 + CM3

CM2 --_~ 0M4

Fig. 4a

Fig. 4b

US. Patent Jan. 14, 2014 Sheet 4 017 US 8,631,160 B2

\?suol Sensor 1
1 Dotot

P \?suol _
re-processrng

\?suol Sensor 2 / M02 SW0 1

Representation
Computation \

SDoto 2
_ Aud'o

Audro Sensor \ Doto3 / Pre—prolcessing

Tactile ,

Pre-processmg Tactile Sensor \ D0104 /

Feedback 2

Feedback 1 r

Predefined) Predefined
Tasks/Goals , Actions \

~ Scene Decision/Dole
Learned /

Tasks/Cools

Motor Actuotort

\Commond Motor ActuotorZ

Motor Actuotor3
Fig. 5

US. Patent Jan. 14, 2014 Sheet 5 017 US 8,631,160 B2

Sequential-i

\?sual Sensor]
1 Datai

P \?suol _ K:
re-processrng

\frsual Sensor 2 / W02 500m 1 Parallel-t

1> Representation
- _ Computation \

Sequential 2 A d_ SW0 2 j \
. o

AUdlO Sensor Data 3 _/- prewgo'cessing ‘

Sequential—3
. Tact'le

Tactile Sensor \ Data 4 / pre_pm'cessing J

Sequentiol- 4 Sequentiot- 5

A Predefined \ / Predefined

Tasks/Goals Actions \\ ~Scene Decision Data {
\ Learned ,

Tasks/Goals

Parallel-2

/ Motor Actuator]

‘COmmOnd v Motor ActuatorZ

~ Motor Actuator3

Fig. 7

US. Patent Jan. 14, 2014 Sheet 6 017 US 8,631,160 B2

Sequential-I Mochine_l

Visual Sensori
Dotot

Prelgiggtssing ‘
\?suol Sensor 2 / W02 300m 1 Porolle|—t

\L Representation
. Computation \ |_ Sequentio 2 A d‘ 300m 2 J

. 0

Audio Sensor _ Dom 3 pre_plio'cessinq

Sequential-3

Tactile Sensor \ Data 4 Pre_TgrCot'c|§Ssing A

// Sequential-4 SequentioI-S M°Chine_2

/ TPrede/t(i;ne<{ k Predefined osks oos Actions \

\\Scene { >Decision Doto \
\ Leorned \ Leorned

Tasks/Cools Actions \
/)

Porollel-Z M0Chine_3

4 Motor Actuotort

\commond ~ Motor ActuotorZ

~ Motor Actuotor3

Fig. 8

US. Patent Jan. 14, 2014

Design Phase

PRIOR ART

Sheet 7 0f 7 US 8,631,160 B2

Developmengp Test/Monitoring
Phase q Phase

Fig. 9

US 8,631,160 B2
1

DEVELOPMENT OF
PARALLEL/DISTRIBUTED APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and claims priority from
European Patent Application No. 05 011 616.9 ?led on May
30, 2005, Which is incorporated by reference herein in its
entirety.

FIELD OF THE INVENTION

The present invention relates to the ?eld of developing a
parallel/ distributed application.

BACKGROUND OF THE INVENTION

Parallel/distributed applications can be composed of sev
eral functions running in parallel and interacting With each
other in order to perform a de?ned task. The design of such
complex systems requires effort especially concerning han
dling of the integrity of system behavior and the de?nition of
a protocol for interaction betWeen parallel tasks. Interactions
betWeen tasks must be synchronized in order to handle data
integrity. Moreover, communication betWeen machines has
to be performed using netWork protocols and in a synchro
nized manner in the netWork.

The development of parallel/distributed applications can
be set up in several Ways and supported by conventional tools.
A conventional process folloWed in the development of such
applications or systems is shoWn in FIG. 9.
A process for developing parallel/distributed applications

may have cycles or may iterate during the development of the
system. The development may continue during the life of the
system. Requirements of the design phase can include de?
nition of global functions of the system, subdivision of the
system into parallel sub-tasks, de?nition of critical conditions
that may occur in sub-process interaction, and analysis of
dangerous conditions such as deadlock. Requirements of the
development phase can include handling of parallel pro
cesses, handling of parallel threads, handling of shared data,
and handling of semaphores, lock mechanisms and condi
tional variables. Requirements of a test/monitoring phase can
include de?nition of mechanisms that alloW users to under
stand system behavior in order to solve problems or ?nd and
remove bugs in the system.

Part of the development/debugging time can be saved
depending on the type of libraries used. Libraries like
PTHREAD can be used for the handling of threads and the
most general lock mechanisms for synchronization. See
David R. Butenhof. Programming With POSIX Threads,
Addison Wesley Publishing, 2000, Which is incorporated by
reference herein in its entirety. The usage of such a library
requires deep knoWledge of parallel programming. Further,
applications developed With this library are prone to errors.
Other libraries, such as ACE, PVM and MPI, also attempt to
solve the problems related to parallel execution and data
exchange in parallel/distributed computing. See Douglas C.
Schmid and Stephen D. Houston, C++ NetWork Program
ming, volume Vol. 1: Master Complexity With ACE and Pat
terns, Addison Wesley Publishing, 2002; Al Geist, Adam
Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
Vaidy Sunderam, PVM: Parallel Virtual Machine, A Users’
Guide and Tutorial for NetWorked Parallel Computing, MIT
Press, Cambridge, Mass., USA, 1994; Marc Snir, Steve Otto,
Steven Huss-Lederman, David Walker and Jack Dongarra,

20

25

30

35

40

45

50

55

60

65

2
MP1: The complete reference, MIT Press, Cambridge, Mass.,
USA, http://WWW.netlib.org/utk/papers/rnpi-book.html,
1996, Which are all incorporated by reference herein in their
entirety. Although these libraries address issues of parallel
programming, they still leave a certain amount of Work to the
user. Moreover, the usage of such libraries does not enforce
modularization or clear design, leaving these aspects to the
responsibility of the user.

Another Way of supporting the development of parallel/
distributed applications is provided by tools such as Rhap
sody or Rational Rose. See http://WWW.ilogix.com; Wendy
Boggs, Michael Boggs, Mastering UML With Rational Rose
2.0, Sybex Books, 2002, Which are all incorporated by refer
ence herein in their entirety. These tools employ a modular
approach and a more comprehensive design by the usage of
Uni?ed Modeling Language (hereinafter “UML”). HoWever,
these tools leave to the user the de?nition and implementation
of many important aspects, for example communication, par
allel processing and synchronization. Their goal is to include
a programming language in an integrated development envi
ronment that can cover the design, coding and test phases,
While still leaving a large degree of freedom to the user.

Another tool that covers the design phase and the develop
ment phase With a modular approach (partitioning of data and
computation) is ControlShell. See Real-Time Innovation,
ControlShell User’ s Manual, Version 7.0, Real-Time Innova
tion Inc ., California, 2001 , Which is incorporated by reference
herein in its entirety. With this tool it is possible to design and
develop applications at the same time by the composition of
several types of modules. This tool is able to handle parallel/
distributed applications, but since it has been designed spe
ci?cally for control systems, the handling of the modules is
under the control of sample-rate units that control the mod
ule’s execution directly (synchronous mode) or indirectly
through a state machine (asynchronous mode). Moreover,
handling of data synchronization betWeen threads is left to the
user.

SUMMARY OF THE INVENTION

One embodiment of the present invention provides a
method for supporting the development of a parallel/distrib
uted application, Wherein the development process comprises
a design phase, an implementation phase and a test phase, and
Wherein the method comprises providing, in the design phase,
a script language for representing elements of a connectivity
graph and the connectivity betWeen them; providing, in the
implementation phase, modules that can be prede?ned for
implementing functionality of the application; providing, in
the implementation phase, executors that can be prede?ned
for de?ning a type of execution for the modules; providing, in
the implementation phase, process-instances that can be pre
de?ned for distributing the application over several comput
ing devices; and providing, in the test phase, abstraction lev
els that can be prede?ned for monitoring and testing the
application in the test phase.
One embodiment of the present invention provides a com

puter-implemented method for developing a parallel/distrib
uted application, comprising a design phase, an implementa
tion phase and a test phase, the method comprising
representing one or more elements of a connectivity graph
and connectivity betWeen the one or more elements using a
script language in the design phase; implementing function
ality of the application in the implementation phase using one
or more modules that can be prede?ned; de?ning a type of
execution for the modules in the implementation phase using
executors that can be prede?ned; distributing the application

US 8,631,160 B2
3

over one or more computing devices in the implementation
phase using one or more process-instances that can be pre
de?ned; and monitoring and testing the application in the test
phase using one or more abstraction levels that can be pre
de?ned.

Example applications of the techniques presented herein
include setting up control systems for humanoid robots or
other actors, such as an automatically guided vehicle, in
Which input signals of differing nature are processed in a
parallel fashion in order to control behavior of the actor. One
embodiment of the present invention provides improved sup
port for the design, creation and testing of parallel/distributed
applications. One embodiment of the present invention sup
ports the design, creation and testing of data-driven parallel/
distributed applications. One embodiment of the present
invention simpli?es the development process for parallel/
distributed applications. One embodiment of the present
invention enables e?icient development of parallel/distrib
uted applications that are robust and reliable.
One embodiment of the present invention comprises pro

cessing, in the implementation phase, the connectivity graph
as represented based on the script language to de?ne and
con?gure particular modules based on the prede?ned mod
ules and to de?ne the connectivity of the particular modules.

The prede?ned modules can comprise computing modules
for implementing functional blocks as part of the computa
tion of the parallel/distributed application. The computing
modules may each have an interface to input data, output data,
input events, output events and initialization parameters. Pas
sive computing modules can also be provided, Which perform
computations in case neW input data is available.

The prede?ned modules can further comprise data mod
ules representing data that is used by the computing modules
and/or is exchanged betWeen the computing modules. The
data modules may represent shared data and each data mod
ule may contain data of a speci?c data type. Each data module
can have an interface comprising an input gate, output ?elds
and initialization parameters. According to one embodiment
of the present invention, data requiring synchronization is
identi?ed and an appropriate synchronization mechanism is
applied for each data module. Resource synchronization is an
operation that enables parallel systems to share common
resources. Each data module may instantiate a list of buffers
providing Write or read memory for the connected computing
module/ s.

The prede?ned modules can also comprise link modules
representing the connectivity pattern connecting computing
modules and/or data modules. Each link module can imple
ment a speci?c communication protocol. Each link module
may relate to one link type out of the group of link types
comprising local memory pointer link for linking modules
belonging to a common process, and netWork link for linking
modules via a netWork.

According to one embodiment of the present invention,
each computing module may be assigned to one executor.
According to one embodiment, an executor may group a set of
computing modules in one or more threads. Each executor
may also represent a pattern of execution for the assigned
modules. An executor may relate to one type of execution
pattern out of the group of patterns comprising parallel execu
tion Wherein each module has its oWn thread, sequential
execution Wherein all modules are executed sequentially in
the same thread, and one step execution Wherein only one step
of execution of all modules is performed. The group of execu
tion patterns may further comprise chain execution Wherein
all computing modules of a thread are executed sequentially

20

25

30

35

40

45

50

55

60

65

4
depending on the availability of data for the ?rst module in the
chain, and step-by-step execution Wherein one computing
module at a time is executed.

According to one embodiment of the present invention, a
process-instance comprises an assignment of modules to a
process. According to one embodiment, each computing
module can be assigned to one process-instance. One
embodiment of the present invention comprises grouping, in
the implementation phase, a set of executors into a single
process as one process-instance.

According to one embodiment of the present invention, a
prede?ned module comprises a monitoring code for monitor
ing the functionality implemented by the module, for
example in a test phase. According to one embodiment, a
prede?ned abstraction level comprises a functionality level
Wherein at least one module generates monitoring data
related to a functionality of the module. According to one
embodiment, a prede?ned abstraction level may additionally
or alternatively comprise a module level, Where the input and
output of at least one module is monitored in order to analyze
the data How related to that module. According to one
embodiment, a prede?ned abstraction level may additionally
or alternatively comprise a system level for monitoring the
entire application. According to one embodiment of the
present invention, a script language is used during execution
to execute the application.
One embodiment of the present invention provides a com

puter-implemented method for supporting the development
of a parallel/ distributed application, Wherein the development
process comprises a design phase, an implementation phase
and a test phase, and Wherein the method comprises provid
ing, in the design phase, a script language for representing
elements of a connectivity graph and the connectivity
betWeen the elements; providing, in the implementation
phase, computing modules, data modules and link modules
for implementing the functionality of the application,
Wherein the modules and their connectivity are automatically
generated from the connectivity graph as represented based
on the script language; and providing, in the test phase, pre
de?ned abstraction levels for monitoring and testing the
application.
One embodiment of the present invention introduces a neW

layer betWeen an operating system and a user application,
Which provides an innovative approach toWards the develop
ment of parallel/distributed systems. Conventional tech
niques for development of parallel/distributed systems
require a designer/developer to handle many complex func
tionalities manually. According to one embodiment of the
present invention, many of these complex functionalities can
be automatically handled by the neW layer.
Under conventional approaches, the granularity at Which a

user must handle parallel/ distributed systems is at the appli
cation level. According to one embodiment of the present
invention, the granularity is at module level, i.e. at the level of
a functionality, a data structure or a data communication
method. One embodiment of the present invention simpli?es
one or more phases in the development of a parallel/distrib
uted system because much more attention can be spent on
elements of the system, also referred to as modules herein,
and less attention needs to be spent on integration issues,
Which are handled automatically. Under conventional
approaches, a user must de?ne or use a design process that
may need to be kept synchronized With the development
phases; according to one embodiment of the present inven
tion, the design is part of the implementation of the system.

US 8,63 l ,160 B2
5

Therefore, one embodiment of the present invention provides
a neW, e?icient approach for design and development of
large-scale parallel systems.
One embodiment of the present invention supports and

simpli?es the design, creation and test of parallel/distributed
data-driven applications, achieved amongst others by the pro
vision of prede?ned modules, namely Computing Modules,
Data Modules and Link Modules With Well de?ned proper
ties.

According to one embodiment of the present invention,
computing modules are objects that may perform a general or
a speci?c functionality, Wherein each computing module can
be associated With an executor that de?nes a type of execu
tion, such as parallel, sequential, or once. According to one
embodiment of the present invention, data modules represent
memory space used to pass information from a source com
puting module to a destination computing module. According
to one embodiment of the present invention, link modules are
objects that de?ne the connectivity betWeen computing mod
ules and data modules. Each Link Module can be associated
With a speci?c communication protocol that determines the
channel that needs to be used in the communication. Accord
ing to one embodiment of the present invention, synchroni
zation betWeen modules and machine-to-machine communi
cation is handled automatically for distributed applications
developed using the techniques described herein. One
embodiment of the present invention can be used for devel
opment of parallel systems, robot applications and real-time
systems, Which should satisfy explicit (bounded) response
time constraints to avoid severe failure situations. Examples
of real-time systems include a Watch, a Washing-machine and
a robot.
One embodiment of the present invention provides for a

tight coupling of the design and implementation of a parallel/
distributed system. According to one embodiment of the
present invention, the design of a system is de?ned by a
connectivity graph that can describe the system in all its parts.
A script language is provided that alloWs one-to-one mapping
of elements of the connectivity graph. Therefore, the appli
cation can be described by using the script language. Accord
ing to one embodiment, the script language is a kind of
high-level language that describes modules and connectivity
betWeen them. A graphical tool that creates and visualizes the
design of parallel/distributed systems may use this language
for an internal representation of the design. According to one
embodiment, the script language can also be used by a run
ning system in order to execute it. In order to be able to
achieve both goals, the script language is both simple and
?exible.

According to one embodiment of the present invention, a
system can be designed by representing it With a number of
functional blocks interconnected in a complex fashion by
arroWs. This type of representation is highly modular and
alloWs quick insights into structure and properties of an appli
cation. Employing this abstraction level enables ef?cient cre
ation of modular systems. According to one embodiment,
functional blocks can be mapped to computing modules,
Wherein the connections betWeen them are represented by
Link Modules. The data that ?oWs through connections, i.e.
the communication betWeen functionalities is represented by
data modules, Which identify the type of data that ?oWs
through arroWs of a graph.

Parallel/ distributed systems typically rely on heavy
resource usage in terms of CPU-power, memory space and
netWork communication capabilities. Ef?cient use of CPU
poWer can be achieved by employing operating system pro
cesses and threads. One embodiment of the present invention

20

25

30

35

40

45

50

55

60

65

6
provides techniques to handle parallelism by introducing the
concepts of executors and process-instances, Which handle
the assignment of functionalities to threads and processes.

According to one embodiment, each computing module
may belong to one executor and one process-instance. Execu
tors can hide the handling of threads While process-instances
can hide the handling of operating system processes. There
may be several types of executors, including parallel execu
tors Wherein each module has its oWn thread; sequential
executors Wherein one or more modules are executed sequen

tially in the same thread; and once executors Wherein only one
step of the execution of all modules is performed. According
to one embodiment of the present invention, a computing
module has internally de?ned one cycle of its computation
that makes executors able to control threads.

According to one embodiment of the present invention,
process-instances de?ne groups, thus determining Which
modules belong to Which processes. Via this partitioning it is
possible to create several processes out of one single graph
and thus communication betWeen modules can be con?ned to
the same process or can belong to tWo or more different

processes. This alloWs the system to choose the appropriate
communication protocol depending on inter-process or intra
process communication.
As parallel/ distributed systems make intensive use of CPU

time, it is a typical situation during execution of conventional
systems that a task is Waiting for data. In other Words, it is a
frequently occurring situation that parallel tasks can compute
only if some data is available. One embodiment of the present
invention provides for a data-driven paradigm to handle this
type of behavior. Data driven systems can condition the
execution of modules With the availability of the data that the
modules require. One embodiment of the present invention
facilitates implementation of the data-driven paradigm by
inserting a standard pattern in the computing modules, Which
conditions the computation in dependency of the availability
of the module’s input data, and Which facilitates an optimized
utilization of available CPU resources.

Parallel/ distributed applications require mechanisms to
preserve shared data integrity. One embodiment of the
present invention achieves shared data integrity by using data
modules. Data Modules hold shared data that is to be
exchanged betWeen tWo or more connected modules. With
the concept of Data Modules it is possible to easily identify
data that requires synchronization and then to apply the
appropriate synchronization mechanism. One skilled in the
art Will recognize that there are a number of common patterns
available for synchronization. One embodiment of the
present invention applies a suitable synchronization mecha
nism in data modules depending on the connected computing
modules and on the parallelism level de?ned by the user
through executors and process-instances.
The concepts of computing modules, data modules and

link modules, in addition to enforcing modularization, facili
tate implementation of monitoring capabilities in parallel/
distributed system, Which can be achieved by de?nition of a
standard module format providing for the insertion of moni
toring code into the modules. Such code can generate infor
mation related to the behavior of the module itself. According
to one embodiment of the present invention, analysis tools
may process this information in order to gain vieWs of the
running system Which enable the user to test, debug and
monitor a running system in an e?icient Way.
One embodiment of the present invention alloWs combina

tion of one or more of the techniques discussed above in a
single tool, thereby providing for a comprehensive and com

US 8,631,160 B2
7

mon philosophy for design, code development and execution
modality of parallel/ distributed systems.

The features and advantages described in the speci?cation
are not all inclusive and, in particular, many additional fea
tures and advantages Will be apparent to one of ordinary skill
in the art in vieW of the drawings, speci?cation, and claims.
Moreover, it should be noted that the language used in the
speci?cation has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shoWs a schematic vieW of a computing module,
according to one embodiment of the present invention.

FIG. 2 shoWs a schematic vieW of a data module according
to one embodiment of the present invention.

FIG. 3 shoWs a functional block diagram illustrating the
interWorking of computing modules, link modules, and a data
module, according to one embodiment of the present inven
tion.

FIGS. 4a, 4b shoW functional block diagrams illustrating
operation of data modules and computing modules for data
access, according to one embodiment of the present inven
tion.

FIG. 5 shoWs a functional block diagram illustrating a
robot control system according to one embodiment of the
present invention.

FIG. 6 shoWs the interface to the visual processing module
depicted in FIG. 5, according to one embodiment of the
present invention.

FIG. 7 shoWs a schematic illustration of an execution pat
tern for the system depicted in FIG. 5, according to one
embodiment of the present invention.

FIG. 8 shoWs a schematic illustration of a partition of the
system of FIGS. 5, 7 onto various machines, according to one
embodiment of the present invention.

FIG. 9 a conventional design process used in application
development.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A preferred embodiment of the present invention is noW
described With reference to the ?gures Where like reference
numbers indicate identical or functionally similar elements.

Reference in the speci?cation to “one embodiment” or to
“an embodiment” means that a particular feature, structure, or
characteristic described in connection With the embodiments
is included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various
places in the speci?cation are not necessarily all referring to
the same embodiment.
Some portions of the detailed description that folloWs are

presented in terms of algorithms and symbolic representa
tions of operations on data bits Within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their Work to others
skilled in the art. An algorithm is here, and generally, con
ceived to be a self-consistent sequence of steps (instructions)
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec
trical, magnetic or optical signals capable of being stored,
transferred, combined, compared and otherWise manipulated.
It is convenient at times, principally for reasons of common

20

25

30

35

40

45

50

55

60

65

8
usage, to refer to these signals as bits, values, elements, sym
bols, characters, terms, numbers, or the like. Furthermore, it is
also convenient at times, to refer to certain arrangements of
steps requiring physical manipulations of physical quantities
as modules or code devices, Without loss of generality.

HoWever, all of these and similar terms are to be associated
With the appropriate physical quantities and are merely con
venient labels applied to these quantities. Unless speci?cally
stated otherWise as apparent from the folloWing discussion, it
is appreciated that throughout the description, discussions
utiliZing terms such as “processing” or “computing” or “cal
culating” or “determining” or “displaying” or “determining”
or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu
lates and transforms data represented as physical (electronic)
quantities Within the computer system memories or registers
or other such information storage, transmission or display
devices.

Certain aspects of the present invention include process
steps and instructions described herein in the form of an
algorithm. It should be noted that the process steps and
instructions of the present invention could be embodied in
softWare, ?rmWare or hardWare, and When embodied in soft
Ware, could be doWnloaded to reside on and be operated from
different platforms used by a variety of operating systems.
The present invention also relates to an apparatus for per

forming the operations herein. This apparatus may be spe
cially constructed for the required purposes, or it may com
prise a general-purpose computer selectively activated or
recon?gured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, such as, but is not limited to, any type of
disk including ?oppy disks, optical disks, CD-ROMs, mag
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, application speci?c integrated circuits
(ASICs), or any type of media suitable for storing electronic
instructions, and each coupled to a computer system bus.
Furthermore, the computers referred to in the speci?cation
may include a single processor or may be architectures
employing multiple processor designs for increased comput
ing capability.
The algorithms and displays presented herein are not inher

ently related to any particular computer or other apparatus.
Various general-purpose systems may also be used With pro
grams in accordance With the teachings herein, or it may
prove convenient to construct more specialiZed apparatus to
perform the required method steps. The required structure for
a variety of these systems Will appear from the description
beloW. In addition, the present invention is not described With
reference to any particular programming language. It Will be
appreciated that a variety of programming languages may be
used to implement the teachings of the present invention as
described herein, and any references beloW to speci?c lan
guages are provided for disclosure of enablement and best
mode of the present invention.

In addition, the language used in the speci?cation has been
principally selected for readability and instructional pur
poses, and may not have been selected to delineate or circum
scribe the inventive subject matter. Accordingly, the disclo
sure of the present invention is intended to be illustrative, but
not limiting, of the scope of the invention, Which is set forth in
the folloWing claims.
One embodiment of the present invention provides various

techniques and tools to support the development of a parallel/
distributed application.

US 8,631,160 B2
9

Script Language

Parallel/ distributed systems can be developed With the aid
of a loW level language in a form such as source code that
hides the general structure of the system for a non-developer.
The general structure can be stored in a number of design
documents, diagrams or graphs that are maintained and
updated during the development process. Properly aligning
the design documents With the momentary development stage
of the system is commonly a dif?cult task.
One embodiment of the present invention enables design of

an application directly in a script form that can be used to
de?ne the design in a document format and at the same time
can be used by the system for con?guration purposes, to
con?gure the modules, establish the connectivity of the appli
cation and to execute it.

Computing Modules

Parallel/distributed systems can be composed of several
functions. These functions are usually assembled in a Way
that does not necessarily folloW a modular design. The de?
nition of computing modules according to one embodiment
of the present invention leads to a modular design providing
a clear distinction betWeen the building blocks that perform
the computations in a parallel/distributed system.

FIG. 1 shoWs an example computing module 10, Which
implements a particular function or functions of a parallel/
distributed system, according to one embodiment of the
present invention. According to one embodiment, computing
module 10 provides a Well-de?ned interface, comprising
inputs 12, outputs 14, input events 16, output events 18 and
initialiZation parameters 20. The inputs 12 identify input data
for computing module 10, Which can be de?ned With a spe
ci?c type, such as read only. The outputs 14 identify output
data that the computing module 10 Writes, Which can be With
a de?ned type such as Write only. The input events 16 identify
signals that computing module 10 receives When certain
events occur outside computing module 10. The output events
18 identify signals that computing module 10 sends When
certain events occur inside computing module 10. The initial
iZation parameters 20 identify initial values for the instantia
tion of computing module 10.

Inputs 12 and outputs 14 of computing module 10 can be
connected to the appropriate type of data modules through a
link module, as described further beloW. The input events 16
of computing module 10 are connected to output events of
computing modules through a link module. The initialiZation
parameters 20 represent the initial attributes of a speci?c
module instance, such as computing module 10. Through
these parameters it is possible to instantiate computing mod
ule 10 With different starting conditions.

Computing modules can in general be active or passive.
Active modules perform their computation unconditionally,
While passive module can perform their computation When
some neW input data is available, Which is neWer With respect
to the last computation time. Therefore, one embodiment of
the present invention alloWs the de?nition of a data-driven
system, in contrast to a clock-driven system, Which uses the
available CPU resources more ef?ciently.

Data Modules

In parallel/distributed systems it is possible to identify data
that is used to communicate results produced by one function
to another. This data is usually globally de?ned in the system
or locally in a function. The de?nition of data modules

20

25

30

35

40

45

50

55

60

65

10
according to one embodiment of the present invention leads
to a modular design enforcing a clear de?nition of the com
munication interface that the functions need in the system.

FIG. 2 illustrates a data module 22, Which speci?es a data
type in a Well-de?ned interface comprising input gate 24,
output ?elds 26 and initialiZation parameters 28, according to
one embodiment of the present invention. Input gate 24 iden
ti?es the entry point of the data that a computing module (not
shoWn) uses to Write neW values (Write). The output ?elds 26
identify the connection point/ s Where computing modules
read the full data or part of it (read). The initialiZation param
eters 28 identify initial values for the instantiation of the data
module 22.

Input gate 24 of data module 22 can be connected to the
output of a computing module With the same data type
through a link module, as described further beloW. The output
?elds 26 can be connected to inputs of computing modules
With the same data types through a link module. The initial
iZation parameters 28 represent the initial attributes of a
speci?ed module instance, such as data module 22. Through
these parameters it is possible to instantiate data module 22
With different starting conditions.

Link Modules

According to one embodiment of the present invention, in
the design phase a system can be represented as a number of
blocks interconnected by arroWs, Wherein link modules can
encapsulate the concept of the arroWs. This type of represen
tation is highly modular and enables insights into the system
at ?rst glance. According to one embodiment of the present
invention, link modules alloW the system to de?ne different
types of communication channels depending on design
requirements.

FIG. 3 illustrates an example of the cooperation of com
puting modules CM1, CM2, a data module DM1 and link
modules LM1, LM2 according to one embodiment of the
present invention. The tWo computing modules CM1, CM2
are connected to data module DM1 via the link modules LM1
and LM2.

According to one embodiment of the present invention, all
modules shoWn in FIG. 3 can belong to the same process. The
communication of data from CM1 to DM1 and from DM1 to
CM2 is performed by copying the output data from CM1 to
DM1 and giving a pointer of this data to CM2. In other Words,
CM1, CM2 and DM1 can share the same memory space,
Wherein the link modules LM1 and LM2 can be of a local
memory pointer link type.

According to another embodiment of the present invention,
CM1 belongs to a machine M1 and CM2 belong to a machine
M2, Wherein machines M1 and M2 are not shoWn in FIG. 3.
In this case the communication from CM1 to CM2 via DM1
can be performed using, for example, a netWork, Wherein the
link modules LM1 and LM2 are of a netWork link type.

According to one embodiment of the present invention,
several types of link modules may be present in a system, each
of them using different channels for data transport.

Executor/Process-Instance

Parallel/distributed systems should be designed and/or
implemented to make e?icient use of parallel computation
facilities. Within a machine, parallel processes or parallel
threads can be employed in order to make full use of the
available hardWare. The usage of processes and threads via
executors and process-instances according to one embodi
ment of the present invention is described next.

US 8,631,160 B2
11

According to one embodiment of the present invention, an
executor groups a set of computing modules in one or more

threads, executing them With a speci?c policy de?ned by the
executor. Examples of executors include parallel executors,
Which assign one thread to each computing module; sequen
tial executors, Which execute all computing modules in the
same thread in a sequence; chain executors, Which execute all
computing modules in the same thread in a sequence, but
Wherein execution is conditioned on the availability of data
for the ?rst module; once executors, Which execute one step
of the computation of the computing modules; and Step
ByStep executors, Which alloW user to execute one comput
ing module at a time through an interactive session.

According to one embodiment of the present invention, a
process-instance groups a set of executors into a single pro
cess. In this Way it is easily possible to distribute an applica
tion over several machines.

According to one embodiment of the present invention, the
abstraction concept of executors and process-instances
removes from developers the need to manually code the usage
of threads and processes. Moreover, in this Way designers can
determine and change at any time the parallelism level of a
system Without the need to develop it in the implementation
code.

Data Buffering

According to one embodiment of the present invention, the
aspect of data buffering is related to the handling synchroni
Zation of data betWeen threads and machines. In the develop
ment and debugging phase of parallel/distributed systems,
conventional techniques require much effort to be spent for
handling synchronization and serialiZation of shared
resources. Although some standard functions exist that sup
port the handling of these aspects, usage of such functional
ities is dif?cult and tedious. Many bugs in parallel/distributed
systems are due to a non-appropriate usage of these conven
tional tools. One embodiment of the present invention pro
vides a solution to this problem by the usage of double buff
ering techniques for handling data modules. According to one
embodiment, each data module instantiates a list of buffers,
Wherein the list is used by the computing modules for Writing
and reading in a mutual exclusive Way.

FIGS. 4a and 4b shoW functional block diagrams to illus
trate data buffering according to one embodiment of the
present invention. FIG. 4a shoWs an example application
Wherein tWo computing modules CM1, CM2 are connected
With data module DM1 for the purpose of Writing output data,
and Wherein three computing modules CM3, CM4, CMS are
connected With data module DM1 for the purpose of reading
input data.

The double buffering technique as used in the example
application of FIG. 4a is illustrated in detail in FIG. 4b,
according to one embodiment of the present invention. The
data module DM1 is associated With a buffer list 30. The
buffer list 30 contains the effective data. A Writer module,
such as CM1 and CM2, oWns a buffer for the next value to be
published. When a Writer module publishes a neW value, it
publishes the buffer and then takes a neW buffer for the next
value. A reading module, such as CM3, CM4, CMS, can read
a published value from the buffer list 30.

With this approach it is possible to de-couple communica
tion betWeen modules such that synchronization is handled
automatically, according to one embodiment of the present
invention. Therefore, one embodiment of the present inven
tion enables non-blocking communication because comput

20

25

30

35

40

45

50

55

60

65

12
ing modules need not stop computation for communication
issues. Moreover, the risk of deadlocks is eliminated accord
ing to one embodiment.

Monitoring

Monitoring a system alloWs developers and users to gain
insight into system performance. Via monitoring it is possible
to keep track of the behavior of parts of the system that
determine its overall execution. Parallel/distributed systems
belong to the applications Which are conventionally most
dif?cult to monitor. Due to parallel execution of the compu
tations, the overall behavior is di?icult to track. This problem
is ampli?ed in systems that are not designed folloWing a
modular paradigm Where there is no concept of an overall
scheme that users could refer to.
One embodiment of the present invention provides several

abstraction levels of system monitoring, such as functionality
level, Wherein the functionality embedded into a computing
module can produce monitoring data, shoWing What a func
tionality is doing; module level, Wherein the modules, With
their inputs and outputs, can be monitored in order to analyZe
local data How; and system level, Wherein the entire system
can be monitored in order to extract a high level description of
the overall behavior. One embodiment of the present inven
tion enables various abstraction levels of system monitoring
to be easily implemented, for example automatically imple
mented.
The folloWing paragraphs describe one example of the Way

one embodiment of the present invention supports the devel
opment of parallel/ distributed systems from the ?eld of robot
ics. An example application that controls a robot by using of
a number of sensors and effectors is described. The robot
comprises sensors, including visual sensors such as a stereo
camera set, audio sensors such as microphones, and tactile
sensors such as force feedback skin sensors. The robot also
comprises effectors, such as motors that control the position
of subparts and the robot as a Whole. According to one
embodiment of the present invention, a robot application
Works as a control system that makes use of sensors and
effectors in order to let the robot generate a Well de?ned
behavior.

FIG. 5 illustrates an exemplary robot control system
according to one embodiment of the present invention.
According to one embodiment, prede?ned modules can be
used for the design. Computing and data modules are shoWn
as rectangles and links as arroWs interconnecting the mod
ules.

According to one embodiment of the present invention, for
the purposes of illustration the behavior of a robot can be
modeled using the folloWing modules:

Sensor modules, Which represent the sensors present.
Pre-processing modules, in Which input information for

sensors is pre-processed in order to ?lter the signals and map
the signals into the spatial map and object map (intermediate
representation).

Representation computation module, in Which semantic
information is derived from the information taken from sen
sors; the output of this module is a scene/ situation represen
tation.

Task/Goals modules, in Which the possible tasks that the
robot can perform are modeled, and goals to be achieved by
these tasks are modeled. Therefore, an autonomous robot can
be created that is able to make decisions independently of the
environment. Feedback can be used to shape representation
coming from the earlier processing stages.

US 8,631,160 B2
13

Actions Modules, Which de?ne hoW a task should be
executed by the robot. These modules can prepare the plan
ning of an action and create the sequence of sub-actions that
are to be executed in order to perform a task. The output of
these modules can be a sequence of commands that should be
executed by the actuator.

Actuators Modules, Which represent the actuators present.
The aspects described so far constitute part of the high level

design of an example robot control system according to one
embodiment of the present invention. Next, the interfaces of
computing modules and data modules and the type of each
link and execution patterns for the system are described.
One example module is the visual processing module. FIG.

5 shoWs that this module has tWo inputs and tWo outputs
according to one embodiment of the present invention. The
resulting interface for this module according to one embodi
ment of the present invention is shoWn in FIG. 6. For example,
the ?gures illustrate vieWs generated on a display of a com
puter system by a development tool implementing one
embodiment of the present invention. In addition to de?ning
the interface of each module, the links and execution patterns
are speci?ed. The de?nition of the links concerns the type of
communication betWeen modules. According to one embodi
ment of the present invention, a standard memory communi
cation link type can be established for communication
betWeen modules that are executed on the same machine.
According to one embodiment of the present invention, a
dedicated netWork link type can be established for connec
tions across machines.
A further design decision concerns the execution pattern,

Which can be determined by the designer via the choice of the
type of executors and the association of the modules. Thus the
designer, supported by the development tool according to one
embodiment of the present invention, can create in a simple,
fast and e?icient Way the required threads and can determine
the synchronization during execution.
An exemplary execution pattern for the robot control sys

tem of FIG. 5 is shoWn in FIG. 7. Feedback connections are
not shoWn for reasons of clarity. According to one embodi
ment of the present invention, in this graph modules have
been grouped using parallel and sequential executors,
Wherein a parallel executor creates one thread for each mod
ule contained in the executor, and a sequential executor cre
ates one thread in Which modules are executed in a sequential
fashion.
A further design decision concerns the subdivision of the

system for execution on several machines. For the example
system described herein, one embodiment of the present
invention assigns one machine to each executor. This is illus
trated in FIG. 8 according to one embodiment of the present
invention. Feedback connections have again been omitted for
clarity.

According to one embodiment of the present invention, the
assignment of modules to executors and machines shoWn in
FIG. 8 is only one possible choice and other useful combina
tions are possible. One embodiment of the present invention
alloWs for ?exible re-assignment of executors and machines
for achieving any required synchronization pattern or incor
porating load balancing aspects.
One skilled in art Will recognize that module’s granularity

is a design meter for the user application. But this factor can
also be taken in account during implementation of the devel
opment tool or environment according to one embodiment of
the present invention. This is because, according to one
embodiment of the present invention, a user application can
oWn any combination of the folloWing aspects: small data size

20

25

30

35

40

45

50

55

60

65

14
for data modules; large data size for data modules; light
computation for computing modules; and heavy computation
for computing modules.
One embodiment of the present invention alloWs simpli?

cation of the design phase, the development and the test phase
of parallel/ distributed systems. One embodiment of the
present invention provides a development tool that achieves
the folloWing advantages: the design of a parallel/ distributed
system is combined With the actual implementation, thereby
enforcing modularity; the implementation of common func
tionality required for parallel/distributed systems is auto
mated; testing and monitoring of the system is simpli?ed.
One embodiment of the present invention supports the

design and creation of parallel/distributed applications. The
creation of such applications requires handling of problems
such as design coherency, synchronization, data communica
tion, computation consistency and many more. Such prob
lems appear in conventional applications comprising parallel/
distributed systems, robot applications and real-time systems.

With respect to parallel/distributed systems, one embodi
ment of the present invention advantageously enables the
?exibility of modular design by using the concepts of data
modules, computing modules and link modules; the auto
matic handling of data communication and synchronization
betWeen modules and many features for handling parallelism
Within one machine or betWeen machines by using the con
cepts of executor and process-instances.

With respect to robot applications, one embodiment of the
present invention advantageously enables the ability to build
systems With modules that may have a user de?ned granular
ity; the automatic handling of data communication betWeen
modules that simplify the integration of large robot systems in
one single environment; the ability to con?gure and modify
the architecture of the robot system by a simple script de?ni
tion ?le; and high performance data communication by using
the concept of data buffering.

With respect to real-time systems, one embodiment of the
present invention offers the folloWing advantages: the ?ex
ibility of modular design by using the concepts of data mod
ules, computing modules and link modules; and the ability to
hold computation determinism by a prede?ned pattern for
handling communication betWeen modules and computation
Within each module.
One embodiment of the present invention alloWs one to

modularize the structure of a parallel/ distributed system to be
developed, Where data, functions and links are clearly sepa
rated, via the de?nition of computing modules, data modules
and link modules.
One embodiment of the present invention provides a data

driven system in a parallel environment developed via the
de?nition of a connectivity graph that represents the data
pathWays triggering the execution events.
One embodiment of the present invention enables handling

of data communication betWeen modules automatically With
respect to synchronization and non-blocking communication.
By synchronization, according to one embodiment, auto
matic handling of data sharing betWeen different threads/
processes is achieved. By enabling non-blocking communi
cation, one embodiment of the present invention alloWs each
computing module of the system to generate neW outputs and
immediately continue the computation, regardless of the sta
tus of the reader modules for these outputs. According to one
embodiment, these tWo features in combination prevent the
occurrence of system deadlocks at the communication level,
thereby overcoming the communication dependency of con
ventional parallel/ distributed systems.

US 8,631,160 B2
15

One embodiment of the present invention allows simpli?
cation of the handling and de?nition of communication chan
nels through the concept of link modules. One embodiment of
the present invention alloWs the user to assign in a simple and
transparent Way threads and processes to computing mod
ules. This feature implies a drastic reduction of the Workload
for system designers/developers, eliminating a strong depen
dency betWeen computation and paralleliZation.
One embodiment of the present invention provides for an

advantageous combination of the expressivity poWer of script
languages and re-con?gurability With the usage of a simple
script language for the de?nition of the graph connectivity of
the user application. With the usage of this simple script
language and the employment of modulariZation, one
embodiment of the present invention attaches importance to
the design phase of a system, removing or minimiZing the gap
betWeen design and development.

The present invention may be embodied in various forms
and should not be construed as limited to the embodiments set
forth herein. Rather, these embodiments are provided so that
disclosure Will be thorough and complete and Will fully con
vey the invention to those skilled in the art. Further, the
apparatus and methods described are not limited to rigid
bodies.

While particular embodiments and applications of the
present invention have been illustrated and described herein,
it is to be understood that the invention is not limited to the
precise construction and components disclosed herein and
that various modi?cations, changes, and variations may be
made in the arrangement, operation, and details of the meth
ods and apparatuses of the present invention Without depart
ment from the spirit and scope of the invention as it is de?ned
in the appended claims.

What is claimed is:
1. A computer-implemented method for developing a par

allel/distributed application, the method comprising:
designing the parallel/ distributed application using a script

language for representing one or more elements of a
connectivity graph and connectivity betWeen the one or
more elements;

implementing the designed parallel/ distributed application
including
implementing in a computing module one or more func

tional blocks that perform the computation of the
parallel/distributed application, each computing
module receiving at least one of input data, input
events, or initialiZation parameters, and generating at
least one of output data or output events,

buffering shared data in a data module Which is at least
one of used by at least tWo computing modules or
exchanged betWeen at least tWo computing modules,
each data module having an input gate, output ?elds,
and initialiZation parameters, the buffering compris
ing instantiating in the data module a list of buffers
providing Write and read memory for the computing
modules connected to the data module, Wherein only
a ?rst computing module of the plurality of comput
ing modules associated With the data module oWns a
buffer in the list for a ?rst value to be published, and
Wherein the ?rst computing module is the only com
puting module con?gured to publish the buffer With
the ?rst value;

connecting computing modules and data modules With
link modules, With at least one link module imple
menting a communication protocol; and

20

25

30

35

40

45

50

55

60

65

16
de?ning a type of execution for the computing modules by

grouping the one or more computing modules in one or
more threads using one or more prede?ned executors;

distributing the parallel/ distributed application over one or
more computing devices by grouping a set of executors
in a single process using one or more prede?ned pro
cess-instances; and

monitoring and testing the implemented parallel/distrib
uted application using one or more abstraction levels
from the group of a functionality level, a module level,
and a system level.

2. The method of claim 1, further comprising processing
the connectivity graph based on the script language in the
implementation phase to de?ne and con?gure one or more
particular modules based on the one or more prede?ned mod
ules and to de?ne connectivity of the one or more particular
modules.

3. The method of claim 1, further comprising one or more
passive computing modules that perform computations When
neW input data is available.

4. The method of claim 1, Wherein a data module of the one
or more data modules comprises data of a speci?c data type.

5. The method of claim 1, further comprising:
identifying data requiring synchronization; and
applying an appropriate synchronization mechanism for

the one or more data modules.

6. The method of claim 1, Wherein the communication
protocol of the at least one link module is one from the group
of link types comprising:

local memory pointer link type, for connecting modules
belonging to a common process; and

network link type, for connecting modules via a network.
7. The method of claim 1, Wherein an executor groups one

or more computing modules in one or more threads.

8. The method of claim 7, Wherein the executor represents
a pattern of execution for assigned modules.

9. The method of claim 8, Wherein the executor relates to a
type of execution pattern of the group of patterns comprising:

parallel execution, Wherein each module has its oWn
thread;

sequential execution, Wherein one or more modules are
executed sequentially in a thread;

one step execution, Wherein only one step of execution of
one or more modules is performed;

chain execution, Wherein one or more computing modules
of a thread are executed sequentially depending on avail
ability of data for a ?rst module in a chain; or

step-by-step execution, Wherein one computing module at
a time is executed.

10. The method of claim 1, Wherein a process-instance
comprises an assignment of one or more modules to a pro
cess.

11. The method of claim 1, Wherein a computing module of
the one or more computing modules is assigned to a process
instance.

12. The method of claim 1, Wherein the implementation
phase further comprises grouping the one or more executors
into a single process as one process-instance.

13. The method of claim 1, Wherein at least one of the one
or more prede?ned modules comprises a monitoring code for
monitoring functionality implemented by the module.

14. The method of claim 1, Wherein at least one of the one
or more prede?ned abstraction levels comprises a function
ality level, Where at least one module generates monitoring
data related to functionality of the module.

15. The method of claim 1, Wherein at least one of the one
or more prede?ned abstraction levels comprises a module

US 8,631,160 B2
17

level, Where input and output of at least one module is moni
tored to analyze data How related to the module.

16. The method of claim 1, Wherein at least one of the one
or more prede?ned abstraction levels comprises a system
level for monitoring the parallel/distributed application.

17. The method of claim 1, Wherein the script language is
used to execute the parallel/ distributed application.

18. The method of claim 1, Wherein the method is used to
develop a control system for a robot.

19. The method of claim 1, Wherein each computing mod
ule is assigned to one executor.

20. The method of claim 1, further comprising the steps of
connecting the output ?elds of a data module to at least one
computing module.

21. The method of claim 1, further comprising the steps of
connecting the input gate of a data module to at least one
computing module.

22. The method of claim 1, Wherein the ?rst computing
module that oWns the buffer in the list for the ?rst value to be
published is further con?gured to

publish the buffer With the ?rst value; and
take a neW buffer for a next value.

23. The method of claim 1, Wherein a second computing
module of the one or more computing modules associated
With the data module is further con?gured to read the ?rst
from the buffer list.

24. A computer-implemented method for implementing a
parallel/ distributed application, the method comprising:

implementing in a plurality of computing modules one or
more functional blocks that perform the computation of
the parallel/distributed application, each computing
module receiving at least one of input data, input events,
or initialiZation parameters, and generating at least one
of output data or output events;

buffering shared data in a data module Which is at least one
of used by at least tWo computing modules or exchanged
betWeen at least tWo computing modules, each data
module having an input gate, output ?elds, and initial
iZation parameters;

connecting computing modules and data modules With link
modules, With at least one link module implementing a
communication protocol;

instantiating in a data module a list of buffers providing
Write and read memory for the computing modules con
nected to the data module, Wherein only a ?rst comput
ing module of the plurality of computing modules asso
ciated With the data module oWns a buffer in the list for
a ?rst value to be published, and Wherein the ?rst com
puting module is the only computing module con?gured
to publish the buffer With the ?rst value, and Wherein a
second computing module of the plurality of computing
modules associated With the data module is con?gured
to read the ?rst value from the buffer list;

20

25

35

45

18
de?ning a type of execution for the computing modules by

grouping the one or more computing modules in one or
more threads using one or more prede?ned executors;

distributing the parallel/ distributed application over one or
more computing devices; and

monitoring and testing the implemented parallel/distrib
uted application using one or more abstraction levels
from the group of a functionality level, a module level,
and a system level.

25. A computer program product embodied on a non-tran
sitory computer readable medium Which When executed by a
computer performs a computer-implemented method for
developing a parallel/ distributed application, comprising:

designing the parallel/ distributed application using a script
language for representing one or more elements of a
connectivity graph and connectivity betWeen the one or
more elements;

implementing the designed parallel/ distributed application
including
implementing in a computing module one or more func

tional blocks that perform the computation of the
parallel/ distributed application, each computing
module receiving at least one of input data, input
events, or initialiZation parameters, and generating at
least one of output data or output events,

buffering shared data in a data module Which is at least
one of used by at least tWo computing modules or
exchanged betWeen at least tWo computing modules,
each data module having an input gate, output ?elds,
and initialiZation parameters, the buffering compris
ing instantiating in the data module a list of buffers
providing Write and read memory for the computing
modules connected to the data module, Wherein only
a ?rst computing module of the plurality of comput
ing modules associated With the data module oWns a
buffer in the list for a ?rst value to be published, and
Wherein the ?rst computing module is the only com
puting module con?gured to publish the buffer With
the ?rst value;

connecting computing modules and data modules With
link modules, With at least one link module imple
menting a communication protocol; and

de?ning a type of execution for the computing modules by
grouping the one or more computing modules in one or
more threads using one or more prede?ned executors;

distributing the parallel/ distributed application over one or
more computing devices by grouping a set of executors
in a single process using one or more prede?ned pro
cess-instances; and

monitoring and testing the implemented parallel/distrib
uted application using one or more abstraction levels
from the group of a functionality level, a module level,
and a system level.

* * * * *

