126-DRI-10-007 **SAFETY COMPLIANCE TESTING FOR FMVSS 126 Electronic Stability Control Systems**

Mitsubishi Motors Corporation, Japan 2010 Mitsubishi Lancer NHTSA No. CA5600

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

11 November, 2010

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION **National Highway Traffic Safety Administration Enforcement** Office of Vehicle Safety Compliance 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Approval Date: 11 November, 2010

FINAL REPORT ACCEPTANCE BY OVSC:

1. Report No.	Government Accession No.	Recipient's Catalog No.	
126-DRI-10-007			
4. Title and Subtitle		5. Report Date	
Final Report of FMVSS 126 Compliand passenger car, NHTSA No. CA5600	ce Testing of 2010 Mitsubishi Lancer	11 November, 2010	
passenger car, NITTSA No. CA3000		6. Performing Organization Co	de
		DRI	
 Author(s) John F. Lenkeit, Technical Directo Brian Kebschull, Principal Enginee 		Performing Organization Re DRI-TM-10-06	port No.
Performing Organization Name and		10. Work Unit No.	
o. Tenoming organization reality	2 / tudi 655	TO. WORK OTHERO.	
Dynamic Research, Inc. 355 Van Ness Ave, STE 200 Torrance, CA 90501		11. Contract or Grant No.	
Tottalice, GA 3030 I		DTNH22-08-D-00098	
12. Sponsoring Agency Name and Ac	ddress	13. Type of Report and Period	Covered
U.S. Department of Transportation National Highway Traffic Safety And Office of Vehicle Safety Complian 1200 New Jersey Avenue, SE, West Building, 4th Floor (NVS-22)	Administration Enforcement nce	Final Test Report 13 April, 2010 to 11 Nover	nber, 2010
Washington, D.C. 20590			
		14. Sponsoring Agency Code	
		NVS-220	
15. Supplementary Notes			
16. Abstract			
	bishi Lancer , NHTSA No. CA5600, in accord 26-02 for the determination of FMVSS 126 co None	mpliance.	Office of Vehicle Safety
17. Key Words		18. Distribution Statement	
Compliance Testing Safety Engineering		Copies of this report are ava	ailable from:
FMVSS 126		NHTSA Technical Informati (NPO 411) 1200 New Jersey Avenue, S Washington, D.C. 20590 Email: tis@nhtsa.dot.gov FAX: (202) 493-2833	SE
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22.
Unclassified	Unclassified	62	

TABLE OF CONTENTS

SECTION	<u>P/</u>	AGE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
5.0	PHOTOGRAPHS	29
6.0	DATA PLOTS	43
7.0	OTHER DOCUMENTATION	47
	 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	48 57 58 59 61 62

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2010 Mitsubishi Lancer, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2010 Mitsubishi Lancer was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- The lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2010 Mitsubishi Lancer

NHTSA No. CA5600 VIN: JA32U1FU4AU007104

Vehicle Type: Passenger Car Manufacture Date: 8/09

Laboratory: Dynamic Research, Inc.

REQUIREMENTS: PASS/FAIL

ESC Equipment and Operational Characteristics (Data Sheet 2)

The vehicle is to be equipped with an ESC system that meets the equipment and operational characteristics requirements. (S126, S5.1, S5.6)

ESC Malfunction Telltale (Data Sheet 3)

Vehicle is equipped with a telltale that indicates one or more ESC system malfunctions. (S126, S5.3)

"ESC Off" and other System Controls and Telltale (Data Sheet 3,4)

Vehicle is equipped with an ESC off telltale indicating the vehicle has been put into a mode that renders the ESC system unable to satisfy the performance requirements of the standard, if such a mode exists. (S5.5.1)

If provided, off control and other system controls as well as the <u>PASS</u> ESC off telltale meets the operational requirements (S126, S5.4, S5.4.1,S5.4.2, S5.5.4, and S5.5.9)

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS:	PASS/FAIL
Vehicle Lateral Stability (Data Sheet 8) Yaw Rate Ratio at 1 second after COS is less than 35% of peak value. (S126, S5.2.1)	<u>PASS</u>
Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of peak value. (S126, S5.2.2)	<u>PASS</u>
Vehicle Responsiveness (Data Sheet 8) Lateral displacement at 1.07 seconds after BOS is at least 1.83 m (6 feet) for vehicles with a GVWR of 3,500kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3)	<u>PASS</u>
ESC Malfunction Warning (Data Sheet 9) Warning is provided to driver after malfunction occurrence. (S126. S5.3)	<u>PASS</u>
Malfunction telltale stayed illuminated as long as malfunction existed and must extinguish after malfunction was corrected. (S126, S5.3.7)	<u>PASS</u>

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

	ILSIVE	I IICLE IIV	SPECTION	AND IEST FREE	ARATION
Vehicle:	2010 Mitsu	bishi Lanc	er Passeng	er Car	
NHTSA N	HTSA No. <u>CA5600</u> Data Sheet Completion Date: <u>4/16/2010</u>				
VIN <u>JA</u>	N <i>JA32U1FU4AU007104</i> Manufacture Date: <u>8/09</u>				
GVWR (k	g): <u>1850.0</u>	Front G	AWR (kg):	<u>1010.0</u> Rea	r GAWR (kg): <u>910.0</u>
Seating P	ositions Fr	ont: <u>2</u>	Mid:	Rear:	<u>3</u>
Odomete	r reading at ti	me of insp	ection:	13 miles (20.8	<u>km)</u>
DESIGNA	TED TIRE SIZ	E(S) FROI	VI VEHICLE	LABELING:	
Fro	ont axle: <u><i>P205</i></u>	5/60 R16	Rear	axle: <u><i>P205/60 F</i></u>	<u>R16</u>
INSTALLE	ED TIRE SIZE	(S) ON VE	HICLE (fron	n tire sidewall)	
			Fror	nt Axle	Rear Axle
	Tire Manufa	acturer:	Yok	ohama_	<u>Yokohama</u>
	Tire	Model:	<u>Avi</u>	<u>d S34</u>	Avid S34
	Ti	re Size:	<u>P205</u> ,	/60 R16	P205/60 R16
TIN	Left Front:	FDNO N	2L 2409	Right Front:	FDNO N2L 2409
	Left Rear:	FDNO N	2L 2409	Right Rear:	FDNO N2L 2409
	led tire sizes act COTR for			sizes? Yes	
DRIVE CO	NFIGURATION	(S):(mark a	III that apply)	_
X Two V	Wheel Drive (2WD)	X Front V	Vheel Drive	Rear Wheel Drive
All W	neel Drive (A	ND)			
Four W	Vheel Drive Au	tomatic - d	ifferential no	locked full time (4WD Automatic)
Four W	Four Wheel Drive (High Gear Locked Differential 4WD HGLD)				
Four W	Vheel Drive Lo	w Gear (4V	VD Low)		
Other (Describe)					

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATION	ONS AND MODE	ES: (ex. default, perfo	rmance, off)
(For each of the vehicl	e's drive config	urations identify avail	able operating modes)
Drive Configuration			
Mode	-		
Drive Configuration			
Mode Drive Configuration Mode):		
VEHICLE STABILITY S List other systems: X ESC	YSTEMS (Chec	k applicable technolog	gies): Roll Stability Control
Active Suspens X ABS	ion X Electro	onic Throttle Control	Active Steering
REMARKS:			
	l Lenkeit	DATE RECORDE	
APPROVED BY:E	3 Kebschull	DATE APPROVE	D: <u>5/3/2010</u>

Data Sheet 2 (Page 1 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

Vehicle: 2010 Mitsubishi Lancer Pas	ssenger Car	
NHTSA No <u>CA5600</u> Dat	a Sheet Completion Date: <u>4/19/2010</u>	1
X Wheel Speed Sensors X X Yaw Rate Sensor X		J
System is capable of generating bra List and describe Components: Hydradjust brake pressure at each wheel and activation of the pump independence of System is capable of determining yas List and describe Components: Yaw	ke torque at each wheel raulic control unit is able to individually by switching valves dent of driver's brake actuation. x	Yes (Pass) No (Fail) Yes (Pass) No (Fail)
System is capable of monitoring driv List and describe Components: <u>Stee</u>		Yes (Pass) No (Fail)
System is capable of estimating side List and describe Components: Side from year rate and lateral acceleration	e slip derivative is estimated	Yes (Pass) No (Fail)

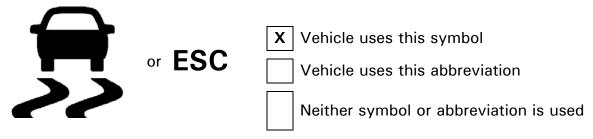
Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL CHARAC	TERISTICS (continued)		
System is capable of modifying Method used to modify torquing means of throttle position con	e: <i>Torque re</i>	duction is achieved		X Yes (Pass) No (Fail)
System is capable of activation and higher	on at speeds	of 20 km/h (12.4 m	ph)	X Yes (Pass) No (Fail)
Speed system becomes active	e: <u>14.4</u>	km/h		
System is capable of activation - acceleration - braking - coasting	– during	following driving physical following driving physical following driving physical following following following physical following physical following following physical following driving driving physical following driving driving physical following driving driving physical following driving driv		X Yes (Pass) No (Fail)
Driving phases during which I Acceleration, braking, coastin traction control	•		<u>or</u>	
Vehicle manufacturer submitt ESC mitigates understeer	ed documen	tation explaining hov	v the	X Yes (Pass) No (Fail)
	DATA	INDICATES COMPL	IANCE:	X Yes (Pass) No (Fail)
REMARKS:				
RECORDED BY: APPROVED BY: Llenkei		DATE RECORDED:	4/19/2 5/3/20	

Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

Vehicle: 2010 Mitsubishi Lancer Passenger Car

NHTSA No. *CA5600* Data Sheet completion date: 4/16/2010


ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? Yes

Telltale Location: Multi-information display between speedometer and tachometer

Telltale Color: <u>Amber</u>

Telltale symbol or abbreviation used

If different than identified above, make note of any message, symbol or abbreviation used.

In addition to the above symbol the message information center displays the abbreviation "ASC OFF", an exclamation point to the right of the symbol, and the words, "SERVICE REQUIRED" below the symbol. Refer to figure 5.6 and p 3-142 in the owner's manual.

Is telltale part of a common space? Yes

Is telltale also used to indicate activation of the ESC system? Yes

If yes explain telltale operation during ESC activation:

Vehicle "slip" symbol in center of multi-information display blinks when ESC is operating, see p 3-142 in the owner's manual.

Data Sheet 3 (Page 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

ESC OFF Telltale (<u>ii provided)</u>		
Vehicle is equipped v	with "ESC OFF" tellta	le? <u>Yes</u>	
Is "ESC Off" telltale telltale? <u>No</u>	combined with "ESC	C Malfunction" telltal	e utilizing a two part
Telltale Location: M	ulti-information displa	ay between speedome	eter and tachometer
Telltale Color: Am	<u>ber</u>		
Telltale symbol or ab	breviation used		
OFF or E	SC OFF	Vehicle uses this Vehicle uses this X Neither symbol oused	·
	displayed in upper righ 's manual.	of any message, symb ot of common display a	
DATA INDICATES Conversely (Vehicle is compliant Remarks:	OMPLIANCE <u>Yes</u> if equipped with a m	nalfunction telltale)	
RECORDED BY: APPROVED BY:	J Lenkeit Brian Kebschull	DATE RECORDED: DATE APPROVED:	4/16/2010 4/20/2010

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: 2010 Mi	tsubishi Lar	ncer Passenger Car
NHTSA No. <u>CA56</u>	<u>600</u>	Data Sheet completion date: 4/16/2010
"ESC OFF" Contro	ols Identific	eation and Operational Check:
the ESC system of	or place the	a control or controls whose purpose is to deactivate ESC system in a mode or modes that may no ce requirements of the standard? X Yes No
Type of contro controls provid (mark all that a Identify each con	ed? ipply)	Dedicated "ESC Off" Control Multi-functional control with an "ESC Off" mode Other (describe) n, labeling and selectable modes.
First Control:	Location	Left knee bolster (Figure 5.7)
	Labeling	ASC OFF
	Modes	ESC On/Off
Second Control:	Location	
	Labeling	
	Modes	
Identify standard o	or default dri	ve configuration FWD
Verify standard or	default drive	e configuration selected X Yes No
		minate upon activation of the dedicated ESC off control or de on the multi-function control?
		X Yes No (Fail)
		tinguish when the ignition is cycled from "on" ("Run") to again to the "On" ("Run") position?
If no, describe how	v the "Off" c	X Yes No (Fail) ontrol functions

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

		"ESC Off" telltale	"ESC Off" telltale
		illuminates upon activation of	extinguishes upon cycling
Cont	rol Mode	control? (Yes/No)	ignition? (Yes/No)
None		, , , , , , , , , , , , , , , , , , , ,	
	at illuminates the "ESC was cycled from "On" ("Run") position?	("Run") to "Lock" or "	
Other System Con	trols that have an ancil	llary effect on ESC Op	eration:
deactivate the ESC	pped with any ancillary C system or place the E he performance require	SC system in a mode	or modes that may
Ancillary Control:	System None		
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labeling		
Ancillary Control:	System		
	Control Description		
	Labeling		

Data Sheet 4 (Page 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC system.

	1	
	Control	
	Activates "ESC Off"	
Ancillary Control	Telltale? (Yes/No)	Warnings or Messages Provided
None		

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes
Ancillary Control	upon cycling ignition? (Yes/No)
None	

For each ancillary control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

<u></u>	Yes	No (Fail)	X	NA
DATA INDICAT	ES COM	PLIANCE:	PAS	s

Remarks: ESC off switch must be held down for 3 seconds or longer to turn ESC off. When ESC is turned off, traction control is also turned off. There is no way to turn off ESC and traction control separately.

RECORDED BY:	J Lenkeit	DATE RECORDED:	4/16/2010
APPROVED BY:	Brian Kebschull	DATE APPROVED:	4/20/2010

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2010 Mitsubishi Lancer Passenger Car NHTSA No. CA5600 Data Sheet completion date: 4/22/2010 **Test Track Requirements:** Test surface slope (0-1%): 0.5% Peak Friction Coefficient (at least 0.9) 0.97 Test track data meets requirements: Yes If no, explain: **Full Fluid Levels:** Fuel Yes Other Fluids Yes (specify) Coolant Yes Oil, Washer fluid **Tire Pressures:** Rear Axle 240 Required; Front Axle 240 KPA **KPA** Actual; LF *240* KPA RF *240* **KPA** LR 240 KPA RR 240 KPA Vehicle Dimensions: Front Track Width 153.0 cm Wheelbase 262.6 cm Rear Track Width 152.7 cm **Vehicle Weight Ratings:** GAWR Front 1010.0 KG GAWR Rear *910.0* KG Unloaded Vehicle Weight (UVW): Front Axle 820.1 KG Left Front *422.3* KG Right Front 397.8 KG Rear Axle *533.0* KG Left Rear *264.0* KG Right Rear 269.0 KG Total UVW 1353.1 KG Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses) 1426.1 KG Calculated baseline weight (UVW + 73kg) Outrigger size required ("Standard" or "Heavy") NA Standard - Baseline weight under 2772 kg (6000 lb) Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal) Point of reference is the front axle centerline.

(Positive from front axle toward rear of vehicle.)

y-distance (lateral) Point of reference is the vehicle centerline.

(Positive from the center toward the right.)

z-distance (vertical) Point of reference is the ground plane.

(Positive from the ground up.)

Locations:

	Center of Gravity			Inertia	Sens	sing System
x-distance	<u>41.6</u> in	<i>105.6</i> cm	_	65.5	in _	<i>166.3</i> cm
y-distance	<u>-1.1</u> in	-2.7 cm	_	0.4	in _	<i>1.0</i> cm
z-distance	in	<i>56.6</i> cm	_	18.0	in _	<i>45.6</i> cm
		Roof Height _	<i>58.6</i> i	n	_14	<i>18.8</i> cm
Distance bet	tween ultrasor	nic sensors	<i>79.75</i> i	n	20	02.6 cm

Remarks:

RECORDED BY: Brian Kebschull DATE RECORDED: 4/22/2010
APPROVED BY: J Lenkeit DATE APPROVED: 5/3/2010

Data Sheet 6 (Page 1 of 3) BRAKE AND TIRE CONDITIONING

Vehicle: 2010 Mitsubishi Lancer Passenger Car

NHTSA No. *CA5600*

Measured tire pressure: LF 247 KPA RF 247 KPA

LR *245* KPA RR *247* KPA

Wind Speed <u>1.6</u> m/s (10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 10.8 °C

Brake Conditioning Time: 10:25:00 AM Date: 4/22/2010

56 km/h (35 mph) Brake Stops

Number of stops executed (10 required) <u>10</u> Stops

Observed deceleration rate range (.5g target) <u>.45-.55</u> g

72 km/h (45 mph) Brake Stops

Number of stops executed (3 required) 3 Stops

Number of stops ABS activated (3 required) 3 Stops

Observed deceleration rate range 0.8-0.9 g

72 km/h (45 mph) Brake Cool Down Period

Duration of cool down period (5 minutes min.) 5 Minutes

Data Sheet 6 (Page 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1	Time:	10:37:00 AM			Date: 4/22		2/2010
Measured cold tire pressure	LF	<u>258</u>	KPA	RF	25	8	KPA
	LR	<u>250</u>	KPA	RR	25	50	KPA
Wind Speed <u>2.2</u> m/s	(10 m/sec (22 mph) max for passenger cars;						
	5m/sec (11 mph) max for MPVs and trucks)						

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 11.1°C

30 meter (100 ft) Diameter Circle Maneuver				
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 32 - 33.6</u>
4-6	Counterclockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u>32 - 33.6</u>

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration					
Test Run	Data File	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)	
1	2	56 ± 2 (35 ± 1)	<u>60</u>	0.5 - 0.6	<u>0.42</u>	
2	3	56 ± 2 (35 ± 1)	<u>80</u>	0.5 - 0.6	<u>0.54</u>	
3		56 ± 2 (35 ± 1)		0.5 - 0.6		
4		56 ± 2 (35 ± 1)		0.5 - 0.6		

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 80 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver				
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)
1-3	<u>4-6</u>	56 ± 2 (35 ± 1)	<u>80</u> (cycles 1-10)	0.5 - 0.6	<u>0.54</u>
4	7	E6 + 2 /2E + 1)	<u>80</u> (cycles 1-9)	0.5 - 0.6	<u>0.54</u>
4		56 ± 2 (35 ± 1)	<u>160</u> (cycle10) *	NA	<u>0.82</u>

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2 Time: 12:31:00 PM Date: 4/22/2010

Measured cold tire pressure LF $\underline{254}$ KPA RF $\underline{250}$ KPA

LR <u>249</u> KPA RR <u>248</u> KPA

Wind Speed _____ m/s (10 m/sec (22 mph) max for passenger cars;

5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 15.3 °C

30 meter (100 ft) Diameter Circle Maneuver				
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 32 - 33.6</u>
4-6	Counterclockwise	0.5 - 0.6	<u>0.5-0.6</u>	<u> 32 - 33.6</u>

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration:

80 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver				
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)
1-3	<u>16-18</u>	56 ± 2 (35 ± 1)	<u>80</u> (cycles 1-10)	0.5 - 0.6	<u>0.54</u>
4	10	50 . 0 (05 . 1)	80 (cycles 1-9)	0.5 - 0.6	<u>0.54</u>
4	<u>19</u>	56 ± 2 (35 ± 1)	(cycle 10)*	NA	<u>0.82</u>

^{*} The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY: Brian Kebschull DATE RECORDED: 4/22/2010

APPROVED BY: J Lenkeit DATE APPROVED: 5/3/2010

Data Sheet 7 (Page 1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2010 Mitsubishi Lancer Passenger Car

NHTSA No. CA5600

Measured tire pressure: LF 258 KPA RF 256 KPA

LR <u>251</u> KPA RR <u>250</u> KPA

Wind Speed 0.7 m/s

(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 11.2 °C

Selected drive configuration FWD

Selected Mode: Default- ESC on

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

$$a_{y,30 \text{deg}rees} =$$
 0.36 g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

$$\frac{30 \, \text{degrees}}{a_{\text{y,30 degrees}}} = \frac{\delta_{\text{SIS}}}{0.55 \, \text{g}}$$

$$\frac{\delta_{\text{sis}} = 45.8 \, \text{degrees (@.55g)}}{\delta_{\text{sis}} = 50 \, \text{degrees (rounded)}}$$

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

	J		C: : W// LA L		
		Time Clock	Steering Wheel Angle		
	Initial Steer	(5 min max	to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	<u>11:20:25 AM</u>	<u>-29.1</u>	<u>10</u>	<u>Good</u>
2	Left	<u>11:24:57 AM</u>	<u>-28.6</u>	<u>11</u>	<u>Good</u>
3	Left	<u>11:28:56 AM</u>	<u>-28.5</u>	<u>12</u>	<u>Good</u>
4	Left				
5	Left	<u>6:23:37 PM</u>			
1	Right	<u>11:32:36 AM</u>	<u>28.8</u>	<u>13</u>	<u>Good</u>
2	Right	11:35:44 AM	<u>27.9</u>	<u>14</u>	<u>Good</u>
3	Right	11:38:33 AM	<u>28</u>	<u>15</u>	Good
4	Right				
5	Right				

Data Sheet 7 (Page 2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

$$\delta_{0.3 \ g, \ overall} = (\mid \delta_{0.3 \ g, \ left \, (1)} \mid + \mid \delta_{0.3 \ g, \ left \, (2)} \mid + \mid \delta_{0.3 \ g, \ left \, (3)} \mid + \delta_{0.3 \ g, \ right \, (1)} + \delta_{0.3 \ g, \ right \, (2)} + \delta_{0.3 \ g, \ right \, (3)}) / 6$$

$$\delta_{0.3 \ g, \ overall} = \underline{28.5} \qquad \text{degrees}$$
[to nearest 0.1 degree]

Remar	ks:
-------	-----

RECORDED BY: Brian Kebschull DATE RECORDED: 4/22/2010

APPROVED BY: J Lenkeit DATE APPROVED: 5/3/2010

Data Sheet 8 (Page 1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2010 Mitsubishi Lancer Pass	senger Car	
NHTSA No. <u>CA5600</u>	tion date: <u>4/22/2010</u>	
Tire conditioning completed		X Yes No
ESC system is enabled		X Yes No
On track calibration checks have	e been completed	X Yes No
On track static data file for each	sensor obtained	X Yes No
Selected Drive Configuration:	FWD (Default)	
Selected Mode: Default		
Overall steering wheel angle (δο.	3 g. overall) 28.5 G	legrees

Lateral Stability Test Series No. 1 - Counterclockwise Initial Steer Direction

		Commanded		Yaw Rates			YRR		YRR	
Clock		Steering	Wheel	(degrees/sec)		at 1.0 sec after		at 1.75 sec after		
Maneuver	Time	Ang	ıle¹				COS		COS	
#							[<	35%]	[<	20%]
	(1.5 – 5.0 min max	Scalar	Angle	nic.	nic.	nic.	%	Pass/Fail	%	Pass/Fail
	between	(* δο.3 g)	(degrees)	$\psi_{\scriptscriptstyle Peak}$	$\psi_{1.0\text{sec}}$	$\psi_{1.75\text{sec}}$				
	runs)		_							
21	13:00	1.5	43	12.74	-0.2	-0.19	-1.60	Pass	-1.46	Pass
22	13:04	2.0	57	16.35	-0.13	-0.12	-0.82	Pass	-0.75	Pass
23	13:07	2.5	71	20.28	-0.16	-0.17	-0.76	Pass	-0.83	Pass
24	13:10	3.0	86	24.28	-0.27	-0.28	-1.09	Pass	-1.15	Pass
26	13:16	3.5	100	27.49	-0.11	0.00	-0.39	Pass	0.01	Pass
27	13:19	4.0	114	31.52	-0.20	-0.14	-0.64	Pass	-0.43	Pass
28	13:22	4.5	128	36.55	-0.18	-0.16	-0.48	Pass	-0.44	Pass
29	13:26	5.0	142	39.66	-0.24	-0.25	-0.60	Pass	-0.63	Pass
30	13:29	5.5	157	45.5	-0.18	-0.18	-0.39	Pass	-0.40	Pass
31	13:32	6.0	171	49.19	-0.17	-0.04	-0.35	Pass	-0.08	Pass
32	13:35	6.5	185	48.69	-0.19	-0.17	-0.39	Pass	-0.35	Pass
33	13:38	7.0	200	52.24	-0.02	-0.05	-0.03	Pass	-0.09	Pass
34	13:41	7.5	214	52.66	-0.15	-0.14	-0.28	Pass	-0.27	Pass
35	13:44	8.0	228	55.18	-0.22	-0.06	-0.40	Pass	-0.11	Pass
36	13:47	8.5	242	55.84	-0.17	-0.07	-0.30	Pass	-0.12	Pass
37	13:50	9.0	256	62.72	-0.23	-0.07	-0.36	Pass	-0.12	Pass
38	13:54	9.5	270	56.3	-0.05	0.07	-0.09	Pass	0.13	Pass

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *\delta_0.3 g, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *\delta_0.3 g, overall is less than or equal to 300 degrees. If 6.5 *\delta_0.3 g, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *\delta_0.3 g, overall without exceeding the 270 degree steering wheel angle.

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

LATERAL STABILITY TEST SERIES NO. 2 - Clockwise Initial Steer Direction

LATERAL STABILITY TEST SERIES NO. 2 - Clockwise initial Steer Direction											
		Comm	anded	,	Yaw Rate	S	Υ	′RR	Y	YRR	
	Clock	Steering	y Wheel	(c	legrees/se	c)	at 1.0	at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Ang	gle¹				C	cos	COS		
#							[< 35%]		[< 20%]		
	(1.5 – 5.0	Scalar	Angle	nic.	nic.	· · ·	%	Pass/Fail	%	Pass/Fail	
	min max between	(* δο.3 g)	(degrees)	$\psi_{\it Peak}$	$\psi_{1.0\mathrm{sec}}$	$\psi_{1.75 \mathrm{sec}}$,	
	runs)	(00.0 g/	(4.29.222)								
41	14:03	1.5	43	-12.5	0.02	-0.1	-0.19	Pass	0.81	Pass	
42	14:06	2.0	57	-16.43	-0.10	-0.17	0.63	Pass	1.01	Pass	
43	14:09	2.5	71	-20.35	0.09	0.21	-0.43	Pass	-1.03	Pass	
44	14:12	3.0	86	-26.01	-0.98	-1.04	3.78	Pass	4.00	Pass	
45	14:15	3.5	100	-29.72	0.07	0.00	-0.22	Pass	0.01	Pass	
46	14:19	4.0	114	-34.16	0.09	0.07	-0.26	Pass	-0.19	Pass	
47	14:22	4.5	128	-36.69	0.23	0.07	-0.62	Pass	-0.20	Pass	
49	14:29	5.0	143	-42.40	0.04	0.10	-0.09	Pass	-0.24	Pass	
50	14:31	5.5	157	-45.43	0.04	0.10	-0.08	Pass	-0.21	Pass	
51	14:35	6.0	171	-49.84	-0.11	0.02	0.22	Pass	-0.05	Pass	
52	14:37	6.5	185	-51.33	0.00	-0.01	0.01	Pass	0.03	Pass	
53	14:41	7.0	200	-54.34	0.19	0.20	-0.34	Pass	-0.36	Pass	
54	14:44	7.5	214	-56.91	-0.06	0.01	0.11	Pass	-0.03	Pass	
55	14:46	8.0	228	-57.82	0.05	0.09	-0.08	Pass	-0.16	Pass	
58	14:55	8.5	242	-61.19	0.20	0.20	-0.33	Pass	-0.33	Pass	
60	15:02	9.0	257	-61.76	0.18	0.03	-0.29	Pass	-0.05	Pass	
63	16:27	9.5	270	-64.15	-0.89	-0.98	1.38	Pass	1.53	Pass	
4	1. Management and a state of the state of the state of the state of C.E.Y.										

^{1.} Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*\delta_{0.3 g, overall} or 270 degrees is utilized, whichever is greater provided the calculated 6.5*\delta_{0.3 g, overall} is less than or equal to 300 degrees. If 6.5*\delta_{0.3 g, overall} is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*\delta_{0.3 g, overall} without exceeding the 270 degree steering wheel angle.

During execution of the Sine with Dwell maneuvers were any of the

following events observed?		-		i
Rim-to-pavement contact		Yes	X	No
Tire debeading		Yes	X	No
Loss of pavement contact of vehicle tires		Yes	X	No
Did the test driver experience any vehicle loss of control or spinout?		Yes	X	No
If "Yes" explain the event and consult with t	he Co	OTR.		

DATA SHEET 8 (3 of 3) **VEHICLE LATERAL STABILITY AND RESPONSIVENESS**

Responsiveness - Lateral Displacement

nesponsive	ness – Lateral Disp								
		Commanded Steering Wheel Calculated Lateral							
			gle	Displac	ement ¹				
Maneuver	Initial Steer		or greater)						
#	Direction	Scalar	Angle	Distance	Pass/Fail				
		* 80.3 g	(degrees)	(m)					
29	Counter Clockwise	5.0	142	-3.1	PASS				
30	Counter Clockwise	5.5	157	-3.3	PASS				
31	Counter Clockwise	6.0	171	-3.3	PASS				
32	Counter Clockwise	6.5	185	-3.3	PASS				
33	Counter Clockwise	7.0	200	-3.4	PASS				
34	Counter Clockwise	7.5	214	-3.3	PASS				
35	Counter Clockwise	8.0	228	-3.4	PASS				
36	Counter Clockwise	8.5	242	-3.4	PASS				
37	Counter Clockwise	9.0	256	-3.5	PASS				
38	Counter Clockwise	-	270	-3.4	PASS				
49	Clockwise	5.0	143	3.1	PASS				
50	Clockwise	5.5	157	3.2	PASS				
51	Clockwise	6.0	171	3.3	PASS				
52	Clockwise	6.5	185	3.3	PASS				
53	Clockwise	7.0	200	3.3	PASS				
54	Clockwise	7.5	214	3.4	PASS				
55	Clockwise	8.0	228	3.4	PASS				
58	Clockwise	8.5	242	3.4	PASS				
60	Clockwise	9.0	257	3.4	PASS				
63	Clockwise	-	270	3.5	PASS				

^{1.} Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

M PASS □ FAII

DATA INDICATES C	OMPLIANCE:	☑ PASS	☐ FAIL
Remarks:			
RECORDED BY:	B Kebschull	DATE RECORDED:	4/22/2010
APPROVED BY:	J Lenkeit	DATE APPROVED:	5/3/2010

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: <u>2010 Mitsubishi Lancer F</u>	Passenger Car			
NHTSA No. <u>CA5600</u>	Data Sheet Co	mpletio	on Date: 4	1/22/2010
	TEST 1			
MALFUNCTION SIMULATION	V: Describe metho	d of m	alfunction	n simulation
Disconnect left rear wheel spee	<u>ed sensor</u>			
MALFUNCTION TELLTALE IL	LUMINATION:			
Telltale illuminates and remains ill activated and if necessary the vel	_		• .	tem is
·			Yes	No
Time for telltale to illuminate afte of 48 ± 8 km/h (30 ± 5 mph) is re-		activa	ated and v	ehicle speed
O Seconds (must be withi	n 2 minutes)	X	Pass	Fail
ESC SYSTEM RESTORATION	J			
Telltale extinguishes after ignition the vehicle is driven at least 2 min	• .	activa	ted and if	necessary
		X	Yes	No
Time for telltale to extinguish after speed of 48 \pm 8 km/h (30 \pm 5mp)	•	s activ	ated and	vehicle
O Seconds (must be withi	n 2 minutes)	X	Pass	Fail
TEST 1 DA	TA INDICATES CO	MPLI <i>A</i>	NCE: PA	SS
Remarks: The "slip" indicator and illuminated immediately upon ignitelltale also illuminated. After ES extinguished immediately upon ig	tion after sensor w C system was rest nition (no driving r	ras dise fored, a equired	connected all telltales d).	d. The ABS
RECORDED BY: Brian Kebschu APPROVED BY: J Lenkeit			:D: <u>4/22/</u> ED <i>5/3/2</i>	
ALLINGVED DI. <i>J. Lenken</i>		11100	レレージ/3/2	010

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2010 Mitsubishi Lancer	Passenger Car
NHTSA No. CA5600	Data Sheet Completion Date: 4/22/2010
	TEST 2
MALFUNCTION SIMULATION	ON: Describe method of malfunction simulation
Disconnected steering wheel	angle sensor.
MALFUNCTION TELLTALE	ILLUMINATION:
	illuminated after ignition locking system is vehicle is driven at least 2 minutes. X Yes No
Time for telltale to illuminate after of 48 ± 8 km/h (30 ± 5 mph) is 0. Seconds (must be with	
ESC SYSTEM RESTORATION	ON
Telltale extinguishes after ignition the vehicle is driven at least 2 r	on locking system is activated and if necessary minutes. X Yes No
Time for telltale to extinguish at speed of 48 \pm 8 km/h (30 \pm 5m	fter ignition system is activated and vehicle
O Seconds (must be wit	thin 2 minutes) X Pass Fail
TEST 2 D	ATA INDICATES COMPLIANCE: PASS
illuminated immediately upon ig	and "ASC OFF" with exclamation point telltales nition after sensor was disconnected. After ESC ales extinguished immediately upon ignition (no
RECORDED BY: Brian Kebsc	hull DATE RECORDED: 4/22/2010
APPROVED BY: <i>J Lenkeit</i>	DATE APPROVED <i>5/3/2010</i>

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

TABLE 1. TEST INSTRUMENTATION

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: DRI Date:2/25/10 Due: 2/25/11
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: American Scale Date: 2/25/10 Due: 2/25/11
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	±0.25 deg	Heitz Automotive Testing Model: Sprint 3	60304	By: DRI Date: 2/25/10 Due: 2/25/11
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometer s: ±2 g Angular Rate Sensors: ±100 deg/s	Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s	Acceleromete rs: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By: Systron Donner Date:11/23/09 Due: 11/23/10
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS- 6 Display Model: RD- 2	1400.604	By: DRI Date:3/2/10 Due:3/2/11
Ultrasonic Distance	Left and Right Side	5-24 inches	0.01 inches	±0.25% of	Massa Products Corporation	DOT-NHTSA D2646	By: DRI Date:2/26/10 Due: 2/26/11
Measuring System	Vehicle Height	127-610 mm	.254 mm	distance	Model: M- 5000/220	DOT-NHTSA D3272	By: DRI Date:2/26/10 Due: 2/26/11

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

TABLE 1. TEST INSTRUMENTATION (CONTD)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti-	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical	Sufficient to meet or	200 Hz	Sufficient to meet or	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: DRI Date:2/9/10 Due: 2/9/11
aliasing, and analog to digital conversion.]	Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	exceed individual sensors		exceed individual sensors	SoMat High level Board EHLS	MSHLS.03- 3182	By: DRI Date: 2/9/10 Due: 2/9/11
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	Functionally verified by DRI prior to test
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	UO8-05-08- 06636	By: Faro Date: 8/18/09 Due: 8/18/10
Outriggers	No output. Safety Item.	N/A	N/A	N/A	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007- 27662-11	N/A	N/A

Figure 5.1. Front View of Test Vehicle

5.0 PHOTOGRAPHS (2 of 14) 2010 Mitsubishi Lancer FMVSS No. 126 NHTSA NO.: CA5600 April 2010

Figure 5.2. Rear View of Test Vehicle

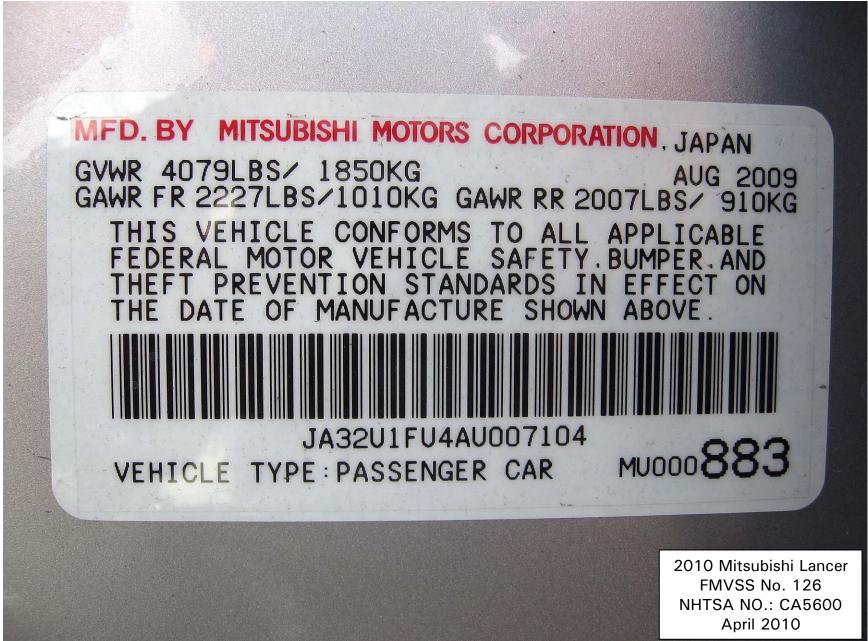


Figure 5.3. Vehicle Certification Label

Figure 5.4. Vehicle Placard

5.0 PHOTOGRAPHS (5 of 14)

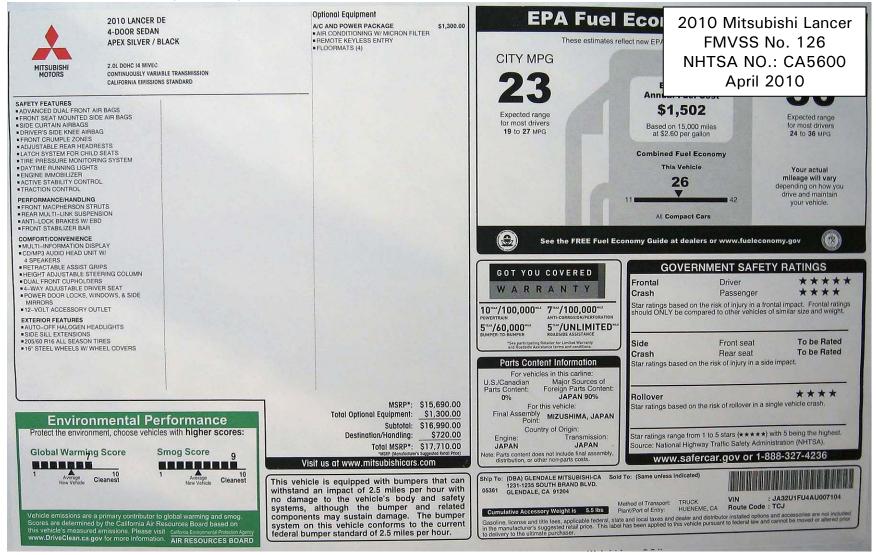


Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 14)

Figure 5.6. Telltale for ESC Malfunction and ESC Off

5.0 PHOTOGRAPHS (7 of 14) ASC OFF 2010 Mitsubishi Lancer FMVSS No. 126 NHTSA NO.: CA5600 April 2010

Figure 5.7. ESC Off Control Switch

5.0 PHOTOGRAPHS (8 of 14)

Figure 5.8. Front View of Vehicle As-Tested

5.0 PHOTOGRAPHS (9 of 14)

Figure 5.9. Rear View of Vehicle As-Tested

5.0 PHOTOGRAPHS (10 of 14) 2010 Mitsubishi Lancer FMVSS No. 126

Figure 5.10. Ultrasonic Height Sensor Mounted on Left Side of Vehicle for Determining Body Roll Angle

NHTSA NO.: CA5600 April 2010

5.0 PHOTOGRAPHS (11 of 14)

Figure 5.11. Rear Outrigger, Mount and Speed Sensor

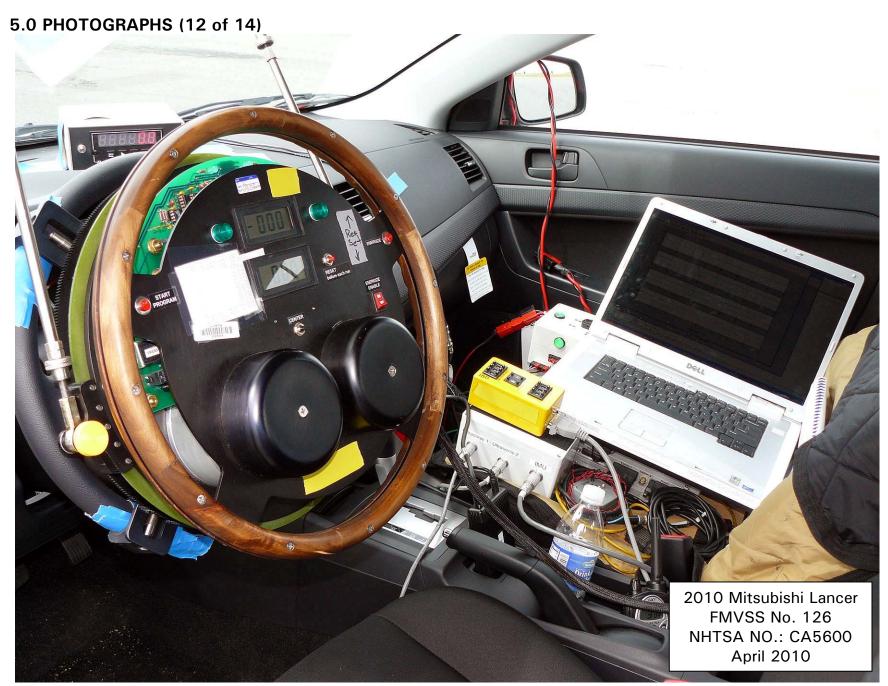


Figure 5.12. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (13 of 14)

Figure 5.13. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (14 of 14)

Figure 5.14. Brake Pedal Load Cell

6.0 DATA PLOTS (1 of 4)

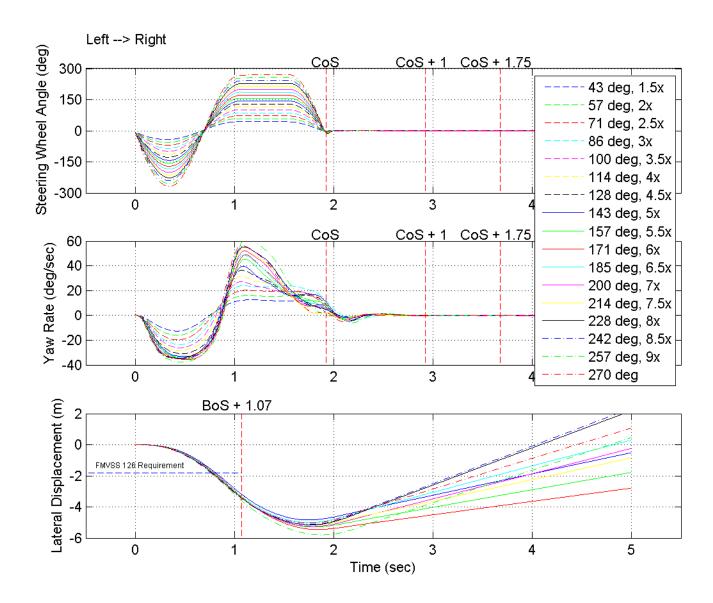


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series

6.0 DATA PLOTS (2 of 4)

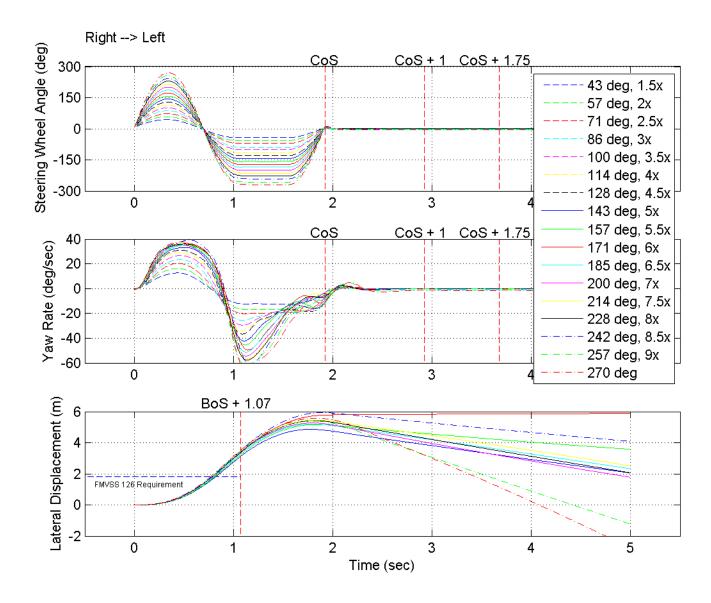


Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series

6.0 DATA PLOTS (3 of 4)

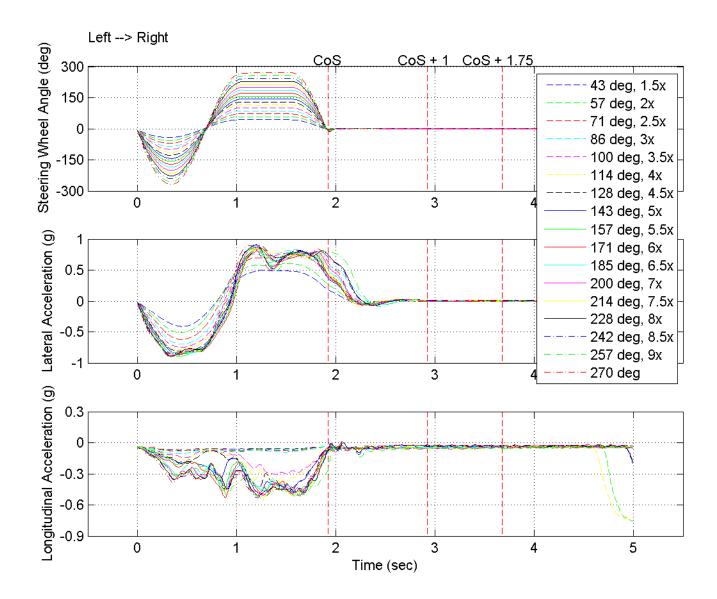


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series

6.0 DATA PLOTS (4 of 4)

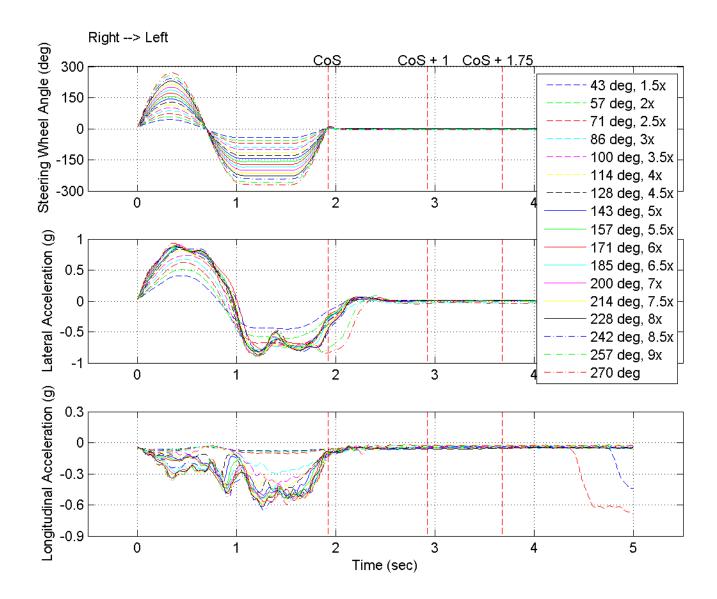


Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Features and controls

Warning display

N00562800034

Warning light

3 In the event of an abnormal condition in the system while driving, the warning display will be displayed.

A CAUTION

- If the warning is displayed, the hill start assist will not operate. Start off carefully.
- Park your vehicle in a safe place and stop the engine.
 Restart the engine and check whether the warning display went out, in which case the hill start assist is again working normally.

If the warning remains displayed or reappears frequently, it is not necessary to stop the vehicle immediately, but the vehicle should be inspected by an authorized Mitsubishi Motors dealer or a repair facility of your choice as soon as possible.

Anti-lock braking system (if so equipped)

N00517900366

The anti-lock braking system helps prevent the wheels from locking up when braking. This helps you keep control of your vehicle and its direction.

Driving hints

- When using the anti-lock brakes (sudden braking), steering is slightly different from normal driving conditions. Use the steering wheel carefully.
- Always keep a safe distance from the vehicle in front of you. Even if your vehicle is equipped with the anti-lock braking system, leave a greater braking distance when:
 - · Driving on gravel or snow-covered roads.
 - · Driving on uneven road surfaces.
- Operation of anti-lock braking system is not restricted to situations where brakes are applied suddenly. This system may also prevent the wheels from locking when you drive over manholes, steel roadwork plates, road markings, or any uneven road surface.
- When the anti-lock braking system is in use, you may feel the brake pedal vibrating and hear a unique sound. You may also feel as if the pedal resists being pressed.

In this situation, simply hold the brake pedal down firmly. Do not pump the brake, which will result in reduced braking performance.

3-134

Features and controls

A CAUTION

- The anti-lock braking system cannot prevent accidents. It is your responsibility to take safety precautions and to drive carefully.
- To prevent failure of the anti-lock braking system, be sure all four wheels and tires are the same size and the same type.
- Never install a limited slip differential as the ABS may not function normally.

Please consult an authorized Mitsubishi Motors dealer.

NOTE

- After your vehicle is driven a short distance after starting the engine, you will hear the sound coming from the engine compartment. These are the normal sounds the anti-lock braking system makes when performing a selfcheck. It does not indicate a malfunction.
- The anti-lock braking system can be used after the vehicle has reached a speed over approximately 6 mph (10 km/h).
 It stops working when the vehicle slows below approximately 3 mph (5 km/h).

Anti-lock braking system warning light / display

N0053160057

Warning light

Warning display type 1

(ABS) ABS SERVICE REQUIRED

If there is a malfunction in the system, the anti-lock braking system warning light will come on and the warning display will appear on the information screen in the multi-information display.

Under normal conditions, the anti-lock braking system warning light only comes on when the ignition switch is turned to the "ON" position and goes off a few seconds later.

Features and controls

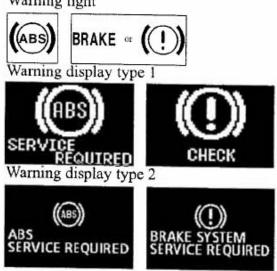
△ CAUTION

- Any of the following warning light/display behavior indicates that the anti-lock braking system is not functioning and only the standard brake system is working. (The standard brake system will still work properly.) If this happens, take your vehicle to an authorized Mitsubishi Motors dealer or a repair facility of your choice as soon as possible.
 - When the ignition switch is in the "ON" position, the warning light does not come on or it remains on and does not go off
 - · The warning light comes on while driving
 - · The warning display appears while driving

If the warning light / display comes on while driving

NG0531700503

If only the anti-lock braking system warning light / display comes on


- Avoid hard braking and high-speed driving. Stop the vehicle in a safe place.
 - Test the system by restarting the engine and driving at a speed of about 12 mph (20 km/h) or higher.
 - If the warning light / display then remain off during driving, there is no problem.

However, if the warning light / display do not disappear, or if they come on again when the vehicle is driven, have the vehicle checked by an authorized Mitsubishi Motors dealer or repair facility of your choice as soon as possible.

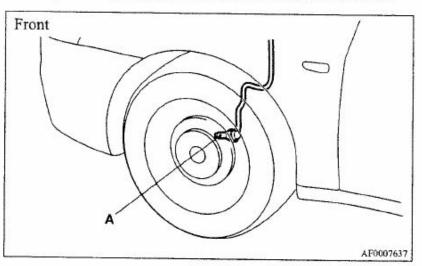
Features and controls

If the anti-lock braking system warning light / display and brake warning light / display come on at the same time

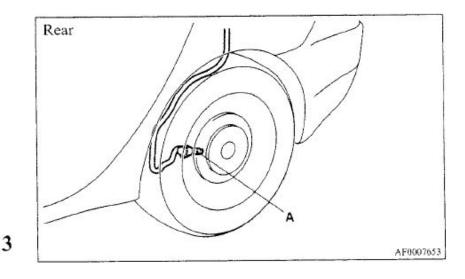
Warning light

The anti-lock braking system and brake force distribution function may not work, so hard braking could make the vehicle unstable.

Avoid hard braking and high-speed driving. Stop the vehicle in a safe place and contact an authorized Mitsubishi Motors dealer or repair facility of your choice.


NOTE

• The anti-lock braking system warning light and brake warning light illuminate at the same time and the warning displays appear alternately on the information screen in the multi-information display.


After driving on icy roads

NII0520200022

After driving on snow or icy roads, remove any snow and ice which may have been left around the wheels. On vehicles that have an anti-lock braking system, be careful not to damage the wheel speed sensors (A) or the cables located at each wheel.

Features and controls

Active Stability Control (ASC) (if so equipped)

NO0559 100118

The Active Stability Control (ASC) takes overall control of the anti-lock braking system, traction control function and skid control function to help maintain the vehicle's control and traction. Please read this section in conjunction with the page on the anti-lock braking system, traction control function and skid control function.

Anti-lock braking system (ABS) → P.3-134 Traction control function → P.3-139 Skid control function → P.3-139

△ CAUTION

- Do not over-rely on the ASC. Even the ASC cannot prevent the natural laws of physics from acting on the vehicle. This system, like any other system, has limits and cannot help you to maintain traction and control of the vehicle in all circumstances. Reckless driving can lead to accidents. It is the driver's responsibility to drive carefully, This means taking into account the traffic, road and environmental conditions.
- Be sure to use the same specified type and size of tire on all four wheels. Otherwise, the ASC may not work properly.
- Do not install any aftermarket limited slip differential (LSD) on your vehicle. The ASC may stop functioning properly.

Features and controls

NOTE

- An operation noise may be emitted from the engine compartment in the following situations. The sound is associated with checking the operations of the ASC. At this time, you may feel a shock from the brake pedal if you depress it. These do not indicate a malfunction.
 - When the ignition switch is set to the "ON" position.
 - When the vehicle is driven for a while after the engine is turned on.
- When the ASC is activated, you may feel a vibration in the vehicle body or hear a whining sound from the engine compartment.

This indicates that the system is operating normally. It does not indicate a malfunction.

When the anti-lock braking system warning light is illuminated, the ASC is not active.

Traction control function

N00559200034

On slippery surfaces, the traction control function prevents the drive wheels from spinning excessive, thus helping the vehicle to start moving from a stopped condition. It also provides sufficient driving force and steering performance as the vehicle turns while pressing the acceleration pedal.

A CAUTION

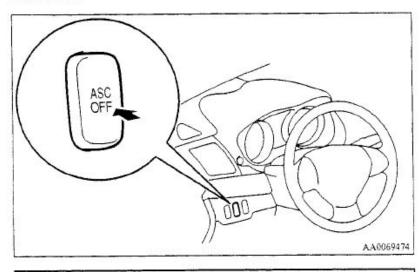
 When driving a vehicle on a snowy or icy road, be sure to install snow tires and drive the vehicle at moderate speeds.

Skid control function

00550300035

The skid control function is designed to help the driver maintain control of the vehicle on slippery roads or during rapid steering maneuvers. It works by controlling the engine output and the brake on each wheel.

NOTE


 The skid control function operates at speeds of about 9 mph (15 km/h) or higher.

Features and controls

"ASC OFF" switch

N00559400111

The ASC is automatically activated when the ignition switch is turned to the "ON" position. You can deactivate the system by pressing down the "ASC OFF" switch for 3 seconds or longer. When the ASC is deactivated, the see display will be illuminated in the multi-information display. To reactivate the ASC, momentarily press the "ASC OFF" switch; the see display is turned off.

△ CAUTION

- For safety reasons, the "ASC OFF" switch should be operated when your vehicle is stopped.
- Be sure to keep the ASC on while driving in normal circumstances.

NOTE

- Using the "ASC OFF" switch turns off both the skid control function and the traction control function.
- When moving out of mud, sand or fresh snow, pressing the accelerator pedal may not allow the engine speed to increase. In such situations, temporarily turning off ASC with the "ASC OFF" switch will make it easier to move out your vehicle.
- If you continue to press the "ASC OFF" switch after the ASC is turned off, the "mistaken operation protection function" will activate and the ASC will turn back on.

3

3-140

ASC operation display, ASC OFF display or ASC indicator (if so equipped)

Indicator (if so equipped)

Display type 1

Display type 2

ASC operation display

When the ASC is operating, the information screen in the multi-information display will change and the ASC operation display will blink.

ASC OFF display

The off display is displayed when the ASC has been deactivated with the "ASC OFF" switch.

ASC indicator (if so equipped)

Indicator blinks when the ASC is operating.

△ CAUTION

- When & display blinks, ASC is operating, which means that the road is slippery or that your vehicle's wheels are beginning to slip. If this happens, drive slower.
- If the temperature in the braking system continues to increase due to continuous brake control on a slippery road surface, the off display will blink. To prevent the brake system from overheating, the brake control of the traction control function will be temporarily suspended. The engine control of the traction control function and normal brake operation will not be affected. Park your vehicle in a safe place. When the temperature in the braking system has come down, the off display will be turned off and the traction control function will start operating again.

NOTE

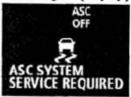
N00559500125

- The off display may come on when you start the engine. This means that the battery voltage momentarily dropped when the engine was started. It does not indicate a malfunction, provided that the display goes out immediately.
- When a spare tire has been put on your vehicle, the gripping ability of the tire will be lower, making it more likely that the & display will blink.

Features and controls

ASC warning display

Indicator (if so equipped)



3

Warning display type 1

Warning display type 2

If an abnormal condition occurs in the system while driving, the warning display will be displayed at the same time.

N0055950013K

\triangle CAUTION

The system may be malfunctioning.

Park your vehicle in a safe place and stop the engine.

Restart the engine again and check whether the start warning display and the set display go out. If the warning display goes out, there is no abnormal condition. If the warning display does not go out or appears frequently, it is not necessary to stop the vehicle immediately, but you should have your vehicle inspected by an authorized Mitsubishi Motors dealer or a repair facility of your choice as soon as possible.

Towing

NU0546380015

\triangle CAUTION

• When towing the vehicle with only the front wheels or only the rear wheels raised off the ground, do not place the ignition switch in the "ON" position. Placing the ignition switch in the "ON" position could cause the ASC to operate, resulting in an accident. Note that the correct towing method depends on the transmission type and the vehicle's drive configuration.

For details, refer to "Towing" on page 6-22.

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE: 4/13/2010 Purpose X Initial Receipt From: Automotive Allies Received via Transfer To: Present Vehicle Condition Dynamic Research, Inc. NHTSA NO.: CA5600 Vehicle VIN: *JA32U1FU4AU007104* Model Year: 2010 Odometer Reading: 13 Miles Make Body Style: Passenger Car Mitsubishi Model: Body Color: Silver Lancer Manufacture Date: 8/09 Dealer: Automotive Allies 1850/4079 GVWR (kg/lb) Price: Leased X All options listed on the "Window Sticker" are present on the test vehicle Tires and wheel rims are new and the same as listed There are no dents or other interior or exterior flaws The vehicle has been properly prepared and is in running condition The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys Representation Proper fuel filler cap is supplied on the test vehicle ▼ Place vehicle in storage area Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test. NOTES: RECORDED BY: J Lenkeit DATE RECORDED: 4/13/2010

DATE APPROVED: 4/13/2010

APPROVED BY: P Broen

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: <u>DTNH22-08-D-00098</u> DATE: <u>5/6/2010</u>	
VehicleVIN:JA32U1FU4AU007104Model Year:2010Make:MitsubishiModel:LancerManufacture Date:8/09GVWR (kg/lb)1850 (4079)	NHTSA NO.: <u>CA5600</u> Odometer Reading: <u>99</u> Miles Body Style: <u>Passenger Car</u> Body Color: <u>Silver</u> Dealer: Price: <u>Leased</u>
LIST OF FMVSS TESTS PERFORMED BY	
_	LY MAINTAINED AND IS IN RUNNING
▼ THE GLOVE BOX CONTAINS AN OUTPY DOCUMENT, CONSUMER INFORM	OWNER'S MANUAL, WARRANTY MATION, AND EXTRA SET OF KEYS
☑ PROPER FUEL FILLER CAP IS SUP REMARKS:	PLIED ON THE TEST VEHICLE
Equipment that is no longer on the test ve Condition Report:	hicle as noted on Vehicle Arrival
Explanation for equipment removal:	
Test Vehicle Condition:	
<u>As new</u>	
RECORDED BY: J Lenkeit	DATE RECORDED: <u>5/6/2010</u>
APPROVED BY: P Broen	DATE APPROVED: <i>5/6/2010</i>

7.4 SINE WITH DWELL TEST RESULTS

2010 Mitsubishi Lancer Passenger Car

NHTSA No.: <u>CA5600</u>
Date of Test: <u>4/22/2010</u>
Date Created: <u>4/22/2010</u>

Lateral Stability Test Series No. 1 - Counterclockwise Initial Steer Direction

	<u> </u>	ability	1631 6	701100	1101 1		arreoroi	OOKWI	oc illitio	<u> </u>		2011011								
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
21	710	51.63	3.545	1090	5.445	847	4.226	-1.6	-0.2	1290	-1.46	-0.19	1440	12.74	949	-4.2	0.4	43.11	775	42.88
22	709	49.88	3.538	1090	5.444	846	4.225	-0.82	-0.13	1290	-0.75	-0.12	1440	16.35	939	-5.23	0.5	57.11	775	56.95
23	708	51.18	3.534	1090	5.443	846	4.225	-0.76	-0.16	1290	-0.83	-0.17	1440	20.28	933	-6.66	0.57	71.07	775	70.87
24	707	50.09	3.53	1090	5.443	846	4.224	-1.09	-0.27	1290	-1.15	-0.28	1440	24.28	927	-7.63	0.63	86.04	775	85.9
26	707	49.92	3.529	1090	5.444	846	4.225	-0.39	-0.11	1290	0.01	0	1440	27.49	922	-8.45	0.64	99.92	775	99.78
27	707	49.89	3.526	1090	5.443	846	4.224	-0.64	-0.2	1290	-0.43	-0.14	1440	31.52	922	-9.3	0.63	113.98	775	113.77
28	707	50.08	3.526	1090	5.443	846	4.225	-0.48	-0.18	1290	-0.44	-0.16	1440	36.55	923	-9.81	0.63	128.14	775	127.96
29	706	49.63	3.525	1090	5.443	846	4.225	-0.6	-0.24	1290	-0.63	-0.25	1440	39.66	924	-10.33	0.62	143.15	775	142.89
30	706	49.99	3.524	1090	5.442	846	4.224	-0.39	-0.18	1290	-0.4	-0.18	1440	45.5	928	-10.84	0.57	157.15	775	156.9
31	706	50.14	3.524	1090	5.442	846	4.225	-0.35	-0.17	1290	-0.08	-0.04	1440	49.19	930	-10.88	0.53	171.13	775	170.89
32	706	49.73	3.524	1090	5.442	846	4.225	-0.39	-0.19	1290	-0.35	-0.17	1440	48.69	926	-10.81	0.71	185.19	775	184.93
33	706	49.91	3.523	1090	5.442	846	4.225	-0.03	-0.02	1290	-0.09	-0.05	1440	52.24	927	-11.02	0.67	200.19	775	199.77
34	706	49.62	3.523	1090	5.441	846	4.225	-0.28	-0.15	1290	-0.27	-0.14	1440	52.66	926	-10.99	0.71	214.25	775	213.9
35	706	49.99	3.524	1090	5.441	846	4.225	-0.4	-0.22	1290	-0.11	-0.06	1440	55.18	927	-11.07	0.73	228.27	776	227.97
36	706	49.74	3.524	1090	5.441	847	4.226	-0.3	-0.17	1290	-0.12	-0.07	1440	55.84	926	-11.11	0.72	241.95	776	241.95
37	706	50.01	3.525	1090	5.441	847	4.226	-0.36	-0.23	1290	-0.12	-0.07	1440	62.72	933	-11.56	0.57	256.19	776	257
38	706	49.85	3.525	1090	5.441	847	4.226	-0.09	-0.05	1290	0.13	0.07	1440	56.3	923	-11.16	0.81	268.92	776	269.87

7.4 SINE WITH DWELL TEST RESULTS

2010 Mitsubishi Lancer Passenger Car

NHTSA No.: <u>CA5600</u>
Date of Test : <u>4/22/2010</u>
Date Created: <u>4/22/2010</u>

Lateral Stability Test Series No. 2 - Clockwise Initial Steer Direction

										D 1100										
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
41	710	49.52	3.545	1091	5.446	847	4.227	-0.19	0.02	1291	0.81	-0.1	1441	-12.5	935	4.02	-0.39	43.72	775	43.53
42	709	50.2	3.538	1090	5.444	847	4.227	0.63	-0.1	1290	1.01	-0.17	1440	-16.43	936	5.31	-0.5	57.91	775	57.49
43	708	49.84	3.534	1090	5.443	847	4.226	-0.43	0.09	1290	-1.03	0.21	1440	-20.35	930	6.43	-0.57	71.82	775	71.43
44	707	49.82	3.53	1092	5.453	845	4.216	3.78	-0.98	1292	4	-1.04	1442	-26.01	926	7.35	-0.63	86.84	775	91.07
45	707	49.91	3.528	1090	5.443	846	4.225	-0.22	0.07	1290	0.01	0	1440	-29.72	927	8.39	-0.62	100.73	775	100.29
46	706	50.23	3.525	1090	5.442	846	4.225	-0.26	0.09	1290	-0.19	0.07	1440	-34.16	926	9.26	-0.6	114.79	775	114.32
47	706	49.9	3.525	1090	5.443	846	4.225	-0.62	0.23	1290	-0.2	0.07	1440	-36.69	925	9.65	-0.61	128.9	775	128.47
49	706	49.86	3.523	1090	5.442	846	4.225	-0.09	0.04	1290	-0.24	0.1	1440	-42.4	929	10.11	-0.58	143.9	775	143.44
50	706	49.48	3.523	1090	5.442	846	4.225	-0.08	0.04	1290	-0.21	0.1	1440	-45.43	931	10.41	-0.52	157.95	775	157.42
51	706	49.94	3.522	1090	5.442	846	4.225	0.22	-0.11	1290	-0.05	0.02	1440	-49.84	936	10.79	-0.33	171.91	775	171.42
52	706	49.92	3.523	1090	5.442	846	4.225	0.01	0	1290	0.03	-0.01	1440	-51.33	932	10.7	-0.56	185.91	775	185.48
53	706	49.89	3.523	1090	5.441	847	4.226	-0.34	0.19	1290	-0.36	0.2	1440	-54.34	933	10.93	-0.61	200.82	775	200.39
54	706	49.8	3.523	1090	5.441	847	4.226	0.11	-0.06	1290	-0.03	0.01	1440	-56.91	936	11.01	-0.53	214.86	775	214.48
55	706	49.67	3.523	1090	5.441	847	4.226	-0.08	0.05	1290	-0.16	0.09	1440	-57.82	934	11.02	-0.56	228.76	775	228.48
58	706	49.6	3.523	1089	5.44	847	4.226	-0.33	0.2	1289	-0.33	0.2	1439	-61.19	940	11.29	-0.34	242.66	776	242.34
60	706	49.61	3.524	1089	5.44	847	4.226	-0.29	0.18	1289	-0.05	0.03	1439	-61.76	934	11.21	-0.63	257.01	776	257.37
63	706	49.74	3.524	1092	5.454	847	4.226	1.38	-0.89	1292	1.53	-0.98	1442	-64.15	933	11.42	-0.61	269.73	776	270.3

7.5 SLOWLY INCREASING STEER TEST RESULTS

2010 Mitsubishi Lancer Passenger Car

NHTSA No.: <u>CA5600</u>
Date of Test: <u>4/22/2010</u>
Date Created: <u>4/22/2010</u>

AYCG CD2 3 r squared File EventPt DOS **MES** Mean SPD AYcount 3 THETAENCF 3 ZeroBegin ZeroEnd (mph) (mph) (g) (deg) 701 1136 -0.2988 701 10 1 49.277 49.8187 -29.0825 0.9941 501 702 1 49.424 50.0102 1129 -28.6167 -0.3043 502 702 11 0.9975 12 699 1 50.088 50.2871 1127 -28.5310 -0.3002 0.9950 499 699 13 705 0 49.748 49.6846 1130 28.8298 0.3031 0.9979 505 705 14 1118 27.9450 705 0 49.716 50.0850 0.3070 0.9976 505 705 50.503 50.8629 28.0437 15 716 0 1119 0.3066 0.9982 516 716

Averages 28.5 0.3033

Scalars	Steering Angles (deg)
1.5	43
2.0	57
2.5	71
3.0	86
3.5	100
4.0	114
4.5	128
5.0	143
5.5	157

Scalars	Steering Angles
	(deg)
6.0	171
6.5	185
7	200
7.5	214
8	228
8.5	242
9	257
9.5	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle: CA5600 2010 Mitsubishi Lancer Passenger Car NHTSA No.:

Wheelbase: 103.375 Inches Faro Arm S/N: U08-05-08-06636

Measurement date: 4/15/2010 Certification date: 8/18/2009

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)

Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

	Ref X	Ref Y	Ref Z
M_PLANE001_Ground_Plane	-	-	0.000
M_Line_Y_Axis	-9.399	0.965	0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Left_Rear_Wheel_Axle	-28.422	13.817	-12.163
M_Point_IMU_side	9.473	46.868	-17.970
M_Point_ROOF	-	-	-58.600
Motion Pak reference point taken from mid height of unit left side			
Motion Pak Width = 3.05" ==> 1/2 W = 1.525			
Motion_PAK_Location	9.473	48.393	-17.970

Measurement Notes

- 1. The Faro arm is positioned just to the left of the vehicle, near the rear door.
- 2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the left, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.
- 3. The Faro arm is used to make the following measurements:
 - Three points on the ground, which establishes the ground plane.
 - Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
 - One point at the 48 inch reference point on the lateral arm. This establishes the origin.
 - Three points on the left rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.
 - One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

	Ref X	Ref Y	Ref Z
Motion_PAK_Location in S7D (Matlab program) coordinate system	65.481	0.392	17.970

Dof V

Calculation Notes:

- 1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).
- 2. Y axis value is -48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)
- 3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).