126-DRI-11-002 SAFETY COMPLIANCE TESTING FOR FMVSS 126 **Electronic Stability Control Systems**

> Daimler AG 2011 Mercedes-Benz Sprinter NHTSA No. CB0515

DYNAMIC RESEARCH, INC.

355 Van Ness Avenue, STE 200 Torrance, California 90501

5 December 2011

Final Report

Prepared Under Contract No.: DTNH22-08-D-00098

U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement **Office of Vehicle Safety Compliance** 1200 New Jersey Avenue, SE West Building, 4th Floor (NVS-221) Washington, DC 20590

Prepared for the Department of Transportation, National Highway Traffic Safety Administration, under Contract No. DTNH22-08-D-00098.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products of manufacturers.

Prepared By: <u>Brion K. Lebeluk</u> Approved By: <u>M. M. C. Elek</u>

Approval Date: 5 December 2011

FINAL REPORT ACCEPTANCE BY OVSC:

Accepted By: <u>Mu Muun</u> Acceptance Date: <u>8 December 201</u>

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
126-DRI-11-002			
4. Title and Subtitle		5. Report Date	
Final Report of FMVSS 126 Complian Sprinter, NHTSA No. CB0515	ce Testing of a 2011 Mercedes-Benz	5 December 2011	
Sprinter, NHTSA NO. CB0515		6. Performing Organization Co	ode
7. Author(s)		DRI 8. Performing Organization Re	anort No
John F. Lenkeit, Technical Directo	or	o. Tenorning Organization Re	
Brian Kebschull, Principal Engined	er	DRI-TM-11-30	
9. Performing Organization Name an	d Address	10. Work Unit No.	
Dynamic Research, Inc. 355 Van Ness Ave, STE 200		11. Contract or Grant No.	
Torrance, CA 90501		TT. CONTACT OF Grant NO.	
		DTNH22-08-D-00098	
12. Sponsoring Agency Name and A		13. Type of Report and Period	Covered
U.S. Department of Transportation National Highway Traffic Safety		Final Test Depart	
Office of Vehicle Safety Complia	nce	Final Test Report 28 June 2011 to 5 Decemb	per 2011
1200 New Jersey Avenue, SE, West Building, 4th Floor (NVS-22	21)		
West Building, 41111001 (1003-22 Washington, D.C. 20590	21)		
-		14. Sponsoring Agency Code	
45 Ourselamentary Natas		NVS-220	
15. Supplementary Notes			
16. Abstract			
A test was conducted on a 2011 Merc	edes-Benz Sprinter, NHTSA No. CB0515, in	n accordance with the specifications	s of the Office of Vehicle
Safety Compliance Test Procedure No Test failures identified were as follows	b. TP-126-02 for the determination of FMVS None	S 126 compliance.	
17. Key Words		18. Distribution Statement	
Compliance Testing Safety Engineering		Copies of this report are av	allable from:
FMVSS 126		NHTSA Technical Informat	ion Services (TIS)
		(NPO 411)	
		1200 New Jersey Avenue, Washington, D.C. 20590	SE
		Email: tis@nhtsa.dot.gov	
		FAX: (202) 493-2833	
19. Security Classif. (of this	20. Security Classif. (of this page)	21. No. of Pages	22.
report)		21. NO. OF Ages	<i>22</i> .
Unclassified	Unclassified	61	

TABLE OF CONTENTS

SECTION	<u>P</u>	AGE
1.0	PURPOSE OF COMPLIANCE TEST	1
2.0	TEST PROCEDURE AND DISCUSSION OF RESULTS	1
3.0	TEST DATA	5
4.0	TEST EQUIPMENT LIST AND CALIBRATION INFORMATION	27
5.0	PHOTOGRAPHS	29
6.0	DATA PLOTS	42
7.0	OTHER DOCUMENTATION	46
	 7.1 Owner's Manual Pages 7.2 Vehicle Arrival Condition Report 7.3 Vehicle Completion Condition Report 7.4 Sine with Dwell Test Results 7.5 Slowly Increasing Steer Test Results 7.6 Inertial Sensing System Location Coordinates 	47 52 53 54 56 57

1.0 PURPOSE OF COMPLIANCE TEST

The purpose of this test is to determine if the test vehicle, a 2011 Mercedes-Benz Sprinter, meets the minimum equipment and performance requirements stated in Federal Motor Vehicle Safety Standard (FMVSS) 126, "Electronic Stability Control Systems."

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS

Testing of the 2011 Mercedes-Benz Sprinter was conducted at Dynamic Research, Inc (DRI) in accordance with NHTSA TP-126-02, dated November 19, 2008.

The vehicle was inspected to ensure it was equipped with an ESC system that:

- Augments vehicle directional stability by applying and adjusting brake torques individually at each wheel to induce a correcting yaw moment to a vehicle;
- Is computer controlled with the computer using a closed-loop algorithm to limit vehicle oversteer and to limit vehicle understeer;
- Has a means to determine the vehicle's yaw rate and to estimate its side slip or side slip derivative with respect to time;
- Has a means to monitor driver steering inputs;
- Has an algorithm to determine the need, and a means to modify engine torque, as necessary, to assist the driver in maintaining control of the vehicle; and
- Is operational over the full speed range of the vehicle (except at vehicle speeds less than 20 km/h (12.4 mph), when being driven in reverse, or during system initialization).

The vehicle was subjected to a 0.7 Hz Sine with Dwell steering maneuver to ensure that it would meet the stability and responsiveness requirements of the standard as follows:

 At 1.0 second after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 35 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTINUED)

- At 1.75 seconds after completion of a required Sine with Dwell steering input, the yaw rate of the vehicle must not exceed 20 percent of the first peak value of yaw rate recorded after the steering wheel angle changes sign (between first and second peaks during the same test run).
- For steering inputs of scalar 5 and greater, the lateral displacement of the vehicle center of gravity with respect to its initial straight path must be at least 1.83 m (6 feet) (for vehicles with a GVWR of 3,500 kg (7,716 lb) or less) when computed 1.07 seconds after the Beginning of Steer (BOS) at the specified steering wheel angles.

System malfunction simulations were executed to verify vehicle could identify and indicate a malfunction.

The vehicle's ESC System appears to meet the performance and equipment requirements as required by FMVSS 126. The test results are summarized on the following summary sheet.

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 1 of 2)

Vehicle: 2011 Mercedes-Benz S	printer_	
NHTSA No. <u><i>CB0515</i></u>	VIN: <u>WD4PE7CC7B5518178</u>	
Vehicle Type: <u>MPV</u>	Manufacture Date: <u>10/10</u>	
Laboratory: <u>Dynamic Research,</u>	Inc.	
REQUIREMENTS:		PASS/FAIL
	Characteristics (Data Sheet 2) with an ESC system that meets al characteristics requirements.	<u>PASS</u>
ESC Malfunction Telltale (Data Sh Vehicle is equipped with a tel ESC system malfunctions. (S	Itale that indicates one or more	<u>PASS</u>
Vehicle is equipped with an E vehicle has been put into a m	ode that renders the ESC system ance requirements of the standard,	<u>PASS</u>
If provided, off control and of ESC off telltale meets the ope S5.4, S5.4.1,S5.4.2, S5.5.4	-	<u>PASS</u>

2.0 TEST PROCEDURE AND DISCUSSION OF RESULTS (CONTD)

Data Summary Sheet (Page 2 of 2)

REQUIREMENTS: PASS/FAIL Vehicle Lateral Stability (Data Sheet 8) Yaw Rate Ratio at 1 second after COS is less than 35% of PASS peak value. (S126, S5.2.1) Yaw Rate Ratio at 1.75 seconds after COS is less than 20% of PASS peak value. (S126, S5.2.2) Vehicle Responsiveness (Data Sheet 8) Lateral displacement at 1.07 seconds after BOS is at least 1.83 PASS m (6 feet) for vehicles with a GVWR of 3,500 kg (7,716 lb) or less, and 1.52 m (5 feet) for vehicles with a GVWR greater than 3,500 Kg (7,716 lb). (S126, S5.2.3) **ESC Malfunction Warning (Data Sheet 9)** Warning is provided to driver after malfunction occurrence. PASS (S126. S5.3) Malfunction telltale stayed illuminated as long as malfunction PASS existed and must extinguish after malfunction was corrected.

(S126, S5.3.7)

3.0 TEST DATA

Data Sheet 1 (Page 1 of 2)

TEST VEHICLE INSPECTION AND TEST PREPARATION Vehicle: 2011 Mercedes-Benz Sprinter CB0515 NHTSA No. Data Sheet Completion Date: 7/14/2011 VIN WD4PE7CC7B5518178 Manufacture Date: 10/10 Rear GAWR (kg): 2431 GVWR (kg): 3878 Front GAWR (kg): 1801 Seating Positions Front: 2 Mid: Rear: 0 28 miles (44.8 km) Odometer reading at time of inspection:

DESIGNATED TIRE SIZE(S) FROM VEHICLE LABELING:

Front axle: <u>LT245/75R16</u>

Rear axle: *LT245/75R16*

INSTALLED TIRE SIZE(S) ON VEHICLE (from tire sidewall)

			<u>F</u>	ront Axle	Rear Axle
	Tire Manufa	acturer:	<u>C</u>	ontinental	<u>Continental</u>
	Tire	Model:	Vanco	o Four Season	Vanco Four Season
	Ti	re Size:	<u>LT</u> 2	245/75R16	<u>LT245/75R16</u>
TIN	Left Front:	<u>HW11</u>	FRF1 381	<u>0</u> Right Front:	<u>HW11 FRF1 3810</u>
	Left Rear:	<u>HW11</u>	FRF1 381	<u>0</u> Right Rear:	<u>HW11 FRF1 3810</u>
re instal	led tire sizes	same as	labeled ti	re sizes? Yes	

Are installed tire sizes same as labeled tire sizes?

If no, contact COTR for further guidance

DRIVE CONFIGURATION(S):(mark all that apply)				
X Two Wheel Drive (2WD) Front Wheel Drive X Rear Wheel Drive				
All Wheel Drive (AWD)				
Four Wheel Drive Automatic - differential no locked full time (4WD Automatic)				
Four Wheel Drive (High Gear Locked Differential 4WD HGLD)				
Four Wheel Drive Low Gear (4WD Low)				
Other (Describe)				

Data Sheet 1 (Page 2 of 2) TEST VEHICLE INSPECTION AND TEST PREPARATION

DRIVE CONFIGURATIONS AND MODES: (ex. default, performance, off)

(For each of the vehicle's drive configurations identify available operating modes)

Drive Configuration:	<u>2WD</u>			
Mode:	<u>Default- ESC</u>	C on		
Drive Configuration:				
Mode:				
Drive Configuration:				
Mode:				
VEHICLE STABILITY SY	STEMS (Chec	k applicable techno	logies):
List other systems:				
X ESC	X Tractio	on Control	X	Roll Stability Control
Active Suspension	on X Electro	onic Throttle Contro		Active Steering
X ABS				
REMARKS:				
RECORDED BY: P	Broen	DATE RECOR	DED:	7/14/2011
APPROVED BY: B	Kebschull	DATE APPRO	VED:	7/20/2011

Data Sheet 2 (Page 1 of 2) **ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS**

Vehicle: 2011	Mercedes-Benz	Sprinter
---------------	---------------	----------

NHTSA No CB0515 Data Sheet Completion Date: 6/28/2011

ESC SYSTEM IDENTIFICATION

Manufacturer/Model Bosch Model 8.1

ESC SYSTEM HARDWARE (Check applicable hardware)

X Electronic Control Unit **X** Hydraulic Control Unit

XModel Speed SensorsXSteering Angle Sensor

X Yaw Rate Sensor X Lateral Acceleration Sensor

List other Components:

ESC OPERATIONAL CHARACTERISTICS

System is capable of generating brake torque at each wheel Brief explanation: <u>The hydraulic controller and circuit can apply</u> independent brake torques to each wheel	<u>X</u>	Yes (Pass) No (Fail)
System is capable of determining yaw rate Brief explanation: <i>System measures yaw rate directly using yaw</i> <u>rate sensor</u>	X	Yes (Pass) No (Fail)
System is capable of monitoring driver steering input Brief explanation: <i>System measures steering angle directly</i>	<u>x</u>	Yes (Pass) No (Fail)
System is capable of estimating side slip or side slip derivative Brief explanation: <u>Side slip is estimated using measured yaw rate</u> and Ackerman yaw rate (calculated using speed and steer angle)	<u>X</u>	Yes (Pass) No (Fail)

APPROVED BY:

Data Sheet 2 (Page 2 of 2) ESC SYSTEM HARDWARE AND OPERATIONAL CHARACTERISTICS

ESC OPERATIONAL CHARACTERISTICS (continued)	
System is capable of modifying engine torque during ESC activation. Method used to modify torque: <i>Fuel delivery is reduced to modify</i> <i>engine torque during ESC activation</i>	X Yes (Pass) No (Fail)
System is capable of activation at speeds of 20 km/h (12.4 mph) and higher	<u>X</u> Yes (Pass) No (Fail)
Speed system becomes active: <u>14.4 km/h</u>	
System is capable of activation during the following driving phases: - acceleration - during activation of ABS or - braking traction control - coasting	X Yes (Pass) No (Fail)
Driving phases during which ESC is capable of activation: <u>The ESC is capable of activation during the listed driving phases</u>	
Vehicle manufacturer submitted documentation explaining how the ESC mitigates understeer	X Yes (Pass) No (Fail)
DATA INDICATES COMPLIANCE:	X Yes (Pass) No (Fail)
REMARKS:	
RECORDED BY: <i>P Broen</i> DATE RECORDED: 6/28/	/2011

DATE APPROVED: 7/20/2011

B Kebschull

3.0 TEST DATA (CONTD) Data Sheet 3 (Page 1 of 2) ESC MALFUNCTION AND OFF TELLTALES

Vehicle: 2011 Mercedes-Benz Sprinter

NHTSA No. CB0515Data Sheet completion date: 7/19/2011

ESC Malfunction Telltale

Vehicle is equipped with malfunction telltale? <u>Yes</u> Telltale Location: <u>Top center of instrument cluster</u> Telltale Color: <u>Yellow</u>

Telltale symbol or abbreviation used

Χ	Vehicle uses this symbol		
	Vehicle uses this abbreviation		
	Neither symbol or abbreviation is used		

If different than identified above, make note of any message, symbol or abbreviation used.

Is telltale part of a common space? No

Is telltale also used to indicate activation of the ESC system? <u>No (see following</u> <u>explanation)</u>

If yes explain telltale operation during ESC activation:

If ESP (ESC) intervenes the 🦺 warning lamp flashes in the instrument cluster.

Data Sheet 3 (Page 2 of 2) ESC MALFUNCTION AND OFF TELLTALES

"ESC OFF" Telltale (if provided)

Vehicle is equipped with "ESC OFF" telltale? No

Is "ESC Off" telltale combined with "ESC Malfunction" telltale utilizing a two part telltale? \underline{NA}

Telltale Location:

Telltale Color:

Telltale symbol or abbreviation used

Vehicle uses this symbol
Vehicle uses this abbreviation
Neither symbol or abbreviation is used

If different than identified above, make note of any message, symbol or abbreviation used.

Is telltale part of a common space? <u>NA</u>

DATA INDICATES COMPLIANCE <u>Yes</u>

(Vehicle is compliant if equipped with a malfunction telltale)

Remarks: This vehicle does not have provision for turning ESC off

RECORDED BY:	P Broen	DATE RECORDED:	7/19/2011
APPROVED BY:	J Lenkeit	DATE APPROVED:	7/26/2011

Data Sheet 4 (Page 1 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Vehicle: 2011 Mercedes-Benz Sprinter

"ESC OFF" Controls Identification and Operational Check:	
	_
Is the vehicle equipped with a control or controls whose purpose is to deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? Yes X No	
Type of control or controls provided? Dedicated "ESC Off" Control (mark all that apply) Multi-functional control with an "ESC Off" mode Identify each control location, labeling and selectable modes.	
First Control: Location NA	
Labeling	
Modes	
Second Control: Location	
Labeling	
Modes	
Identify standard or default drive configuration RWD	
Verify standard or default drive configuration X Yes No	
Does the "ESC Off" telltale illuminate upon activation of the dedicated ESC off control or selection of the "ESC Off" mode on the multi-function control?	
<u>X</u> NA <u>Yes</u> No (Fail)	
Does the "ESC Off" telltale extinguish when the ignition is cycled from "on" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position?	
<u>X</u> NA <u>Yes</u> No (Fail) If no, describe how the "Off" control functions	

Data Sheet 4 (Page 2 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

If a multi-function control is provided, cycle through each mode setting on the control and record which modes illuminate the "ESC Off" telltale. Also, for those modes that illuminate the ESC Off" telltale identify if the telltale extinguishes upon cycling the ignition system.

Control Mode	"ESC Off" telltale illuminates upon activation of control? (Yes/No)	"ESC Off" telltale extinguishes upon cycling ignition? (Yes/No)
NA		

For each mode that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition was cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? X NA Yes No

Other System Controls that have an ancillary effect on ESC Operation:

Is the vehicle equipped with any ancillary controls that upon activation may deactivate the ESC system or place the ESC system in a mode or modes that may no longer satisfy the performance requirements of the standard? Yes X No

Ancillary Control:	System <u>NA</u>
	Control Description
	Labeling
Ancillary Control:	System
	Control Description
	Labeling
Ancillary Control:	System
	Control Description
	Labeling

Data Sheet 4 (Page 3 of 3) ESC AND ANCILLARY SYSTEM CONTROLS

Activate each ancillary control listed above and record whether the control illuminates the "ESC Off" telltale. Also, record warnings or messages provided regarding the ESC system.

	Control Activates "ESC Off"	
Ancillary Control	Telltale? (Yes/No)	Warnings or Messages Provided
NA		

For those controls that illuminate the "ESC Off" telltale above identify if the "ESC Off" telltale extinguishes upon cycling the ignition system.

	"ESC Off" telltale extinguishes				
Ancillary Control	upon cycling ignition? (Yes/No)				
NA					

For each ancillary control that illuminates the "ESC Off" telltale, did the telltale extinguish when the ignition is cycled from "On" ("Run") to "Lock" or "Off" and then back again to the "On" ("Run") position? If activating the control places the vehicle into a low-range four-wheel drive configuration designed for low-speed, off-road driving, the ESC system may remain turned off after the ignition has been cycled off and then back on and therefore the "ESC Off" telltale may not extinguish.

Yes	No (Fail)	Х	NA
-----	-----------	---	----

DATA INDICATES COMPLIANCE: PASS

Remarks: This vehicle does not have provision for turning ESC off

RECORDED BY:	P Broen	DATE RECORDED:	7/13/2011
APPROVED BY:	B Kebschull	DATE APPROVED:	7/20/2011

Data Sheet 5 (Page 1 of 3) TEST TRACK AND VEHICLE DATA

Vehicle: 2011 Mercedes-Benz Sprinter
NHTSA No.CB0515Data Sheet completion date:7/20/2011
Test Track Requirements: Test surface slope (0-1%): 0.5% Peak Friction Coefficient (at least 0.9) 0.939 Test track data meets requirements: Yes If page symplements:
Test track data meets requirements:YesIf no, explain:
Full Fluid Levels: Fuel Yes Other Fluids Yes (specify)
Coolant <u>Yes</u> <u>Oil, Washer Fluid, Brake Fluid</u>
Tire Pressures:
Required; Front Axle <u>320</u> kPa Rear Axle <u>480</u> kPa
Actual; LF <u>320</u> kPa RF <u>320</u> kPa
LR <u>480</u> kPa RR <u>480</u> kPa
Vehicle Dimensions: Front Track Width <u>170.8</u> cm Wheelbase <u>365.8</u> cm
Rear Track Width <u>176.5</u> cm
Vehicle Weight Ratings:GAWR Front1801kgGAWR Rear2431kg
Unloaded Vehicle Weight (UVW):
Front Axle <u>1333.1</u> kg Left Front <u>674.0</u> kg Right Front <u>659.1</u> kg
Rear Axle <u>1011.6</u> kg Left Rear <u>505.8</u> kg Right Rear <u>505.8</u> kg
Total UVW <u>2344.7</u> kg
Baseline Weight and Outrigger Selection (only for MPVs, Trucks, Buses)
Calculated baseline weight (UVW + 73kg) <u>2417.7</u> kg
Outrigger size required ("Standard" or "Heavy") Standard
Standard - Baseline weight under 2772 kg (6000 lb) Heavy - Baseline weight equal to or greater than 2772 kg (6000 lb)

Data Sheet 5 (Page 2 of 3) TEST TRACK AND VEHICLE DATA

UVW with Outriggers: (only for MPVs, Trucks, Buses)

Front axle	1401.6	kg	Left front	707.2	kg	Right front	694.4	kg
Rear axle	1057.3	kg	Left rear	527.5	kg	Right rear	529.8	kg
			Total UVW w	vith outr	iggers	2458.9	kg	

Loaded Vehicle Weight w/Driver and Instrumentation (no Ballast)

Front axle	1470.1	kg	Left front	732.6	kg	Right front	737.5	kg
Rear axle	1134.9	kg	Left rear	571.5	kg	Right rear	563.4	kg
			V	ehicle We	ight	2605.0	kg	

Ballast Required =		[Total UVW with triggers (if applicable)]		kg	- [Loaded Weight w/Driver and Instrumentation)]	
=	<u>2458.9</u>	kg	+ <u>168</u>	kg	- 2605.0	kg
		=	<u>21.9</u>	kg		

Total Loaded Vehicle Weight w/Driver and Instrumentation and Ballast

Front axle	1480.1	kg	Left front	733.5	kg	Right front	746.6	kg
Rear axle	1144.9	kg	Left rear	572.9	kg	Right rear	572.0	kg
				Total	UVW _	2625.0	kg	

Data Sheet 5 (Page 3 of 3) TEST TRACK AND VEHICLE DATA

Center of Gravity and Inertial Sensing System Location at Loaded Vehicle Condition:

x-distance (longitudinal)	Point of reference is the front axle centerline. (Positive from front axle toward rear of vehicle.)
y-distance (lateral)	Point of reference is the vehicle centerline. (Positive from the center toward the right.)
z-distance (vertical)	Point of reference is the ground plane. (Positive from the ground up.)

Locations:

Center of Gravity				Inertial Sen	sing System
x-distance	<u>62.8</u> in	<i>159.5</i> cm		<i>65.0</i> in	<u>165.2</u> cm
y-distance	<u> </u>	<i>0.4</i> cm		<i>-0.9</i> in	<i>-2.4</i> cm
z-distance	<u>39.7</u> in	<i>100.9</i> cm		<u>28.9</u> in	<u>73.4</u> cm
		Roof Height	<i>104.5</i> in	20	<u>65.4</u> cm
Distance be	tween ultrasor	<i>90.0</i> in	2.	2 <i>8.6</i> _cm	

Remarks:

RECORDED BY:	P Broen	DATE RECORDED:	7/20/2011
APPROVED BY:	B Kebschull	DATE APPROVED:	7/20/2011

Data Sheet 6 (Page 1 of 3) BRAKE AND TIRE CONDITIONING

Vehicle: 2011 Mercedes-Benz S	Vehicle: 2011 Mercedes-Benz Sprinter							
NHTSA No. <u>CB0515</u>								
Measured tire pressure:	LF	<u>332</u>	kPa	RF	<u>331</u>	kPa		
	LR	<u>493</u>	kPa	RR	<u>487</u>	kPa		
Wind Speed: <u>3.3</u> m/s								
(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)								
Ambient Temperature (7°C (45°F) - 40°C (104°F)) <u>29</u> °C								
Brake Conditioning Time: <u>11:05:00 AM</u> Date: <u>7/20/2011</u>								
56 km/h (35 mph) Brake Stops								
Number of s	stops	execute	ed (10 requ	ired)		<u>10</u>	Stops	
Observed dec	elerat	tion rang	ge (0.5g tar	get)	<u>0.45 - (</u>	0.55	g	
72 km/h (45 mph)	Brake	Stops						
Number of	stop	s execu	ted (3 requ	ired)		<u>3</u>	Stops	
Number of stops ABS activated (3 required) <u>3</u> Stop							Stops	
Observed deceleration range <u>0.8-0.9</u> g							g	
72 km/h (45 mph)	Brake	Cool D	own Period					
Duration of co	ol do	wn peri	od (5 minut	es mi	n.)	<u>5</u>	Minutes	

Data Sheet 6 (Page 2 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 1	Time: <u>11:28:00 AM</u>	Date: <u>7/20/2011</u>			
Measured cold tire pressure	LF <u>348</u> kPa	RF <u>349</u> kPa			
	LR <u>508</u> kPa	RR <u>506</u> kPa			
Wind Speed <u>2.2</u> m/s	(10 m/sec (22 mph) max for passenger cars; 5m/sec (11 mph) max for MPVs and trucks)				

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 31°C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Steering	Target Lateral	Observed Lateral	Observed Vehicle		
Test Null	Direction	Acceleration (g)	Acceleration (g)	Speed (Km/h)		
1-3	Clockwise	0.5 - 0.6	<u>0.5 - 0.55</u>	<u> 30.4 - 32</u>		
4-6	Counterclockwise	0.5 – 0.6	<u>0.5 - 0.55</u>	<u> 30.4 - 32</u>		

	5-1 Hz Cycle Sinusoidal Steering Maneuver to Determine Steering Wheel Angle for 0.5-0.6 g Lateral Acceleration							
Test Run	Data File	Vehicle Speed Km/h(mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)			
1	2	$56 \pm 2 (35 \pm 1)$	<u>60</u>	0.5 - 0.6	<u>0.22</u>			
2	3	56 ± 2 (35 ± 1)	<u>150</u>	0.5 - 0.6	<u>0.5</u>			
3	4	56 ± 2 (35 ± 1)	<u>150</u>	0.5 - 0.6	<u>0.5</u>			
4		56 ± 2 (35 ± 1)		0.5 - 0.6				

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration: 150 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver						
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)		
1-3	<u>5-7</u>	$56 \pm 2 (35 \pm 1)$	<u>150 (</u> cycles 1-10)	0.5 - 0.6	<u>0.5</u>		
4	0		<u>150 (</u> cycles 1-9)	0.5 - 0.6	<u>0.5</u>		
4 <u>8</u> 56 ± 2 (35	56 ± 2 (35 ± 1)	<u>300 (</u> cycle10) *	NA	<u>0.68</u>			

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Data Sheet 6 (Page 3 of 3) BRAKE AND TIRE CONDITIONING

Tire Conditioning series No. 2	Time: <u>3:02:00 PM</u>	Date: <u>7/20/2011</u>
Measured cold tire pressure	LF <u>346</u> kPa	RF <u>347</u> kPa
	LR <u>504</u> kPa	RR <u>504</u> kPa
Wind Speed <u>3.7</u> m/s	(10 m/sec (22 mph) max 5m/sec (11 mph) max fo	

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 33 °C

30 meter (100 ft) Diameter Circle Maneuver						
Test Run	Steering Direction	Target Lateral Acceleration (g)	Observed Lateral Acceleration (g)	Observed Vehicle Speed (Km/h)		
1-3	Clockwise	0.5 - 0.6	<u>0.5-0.55</u>	<u> 30.4 - 32</u>		
4-6	Counterclockwise	0.5 - 0.6	<u>0.5-0.55</u>	<u> 30.4 - 32</u>		

Steering wheel angle that corresponds to a peak 0.5-0.6 g lateral acceleration:

150 degrees

	10-1 Hz Cycle Sinusoidal Steering Maneuver						
Test Run	Data File	Vehicle Speed Km/h (mph)	Steering Wheel Angle (degrees)	Target Peak Lateral Acceleration (g)	Observed Peak Lateral Acceleration (g)		
1-3	<u>23-25</u>	56 ± 2 (35 ± 1)	<u>150</u> (cycles 1-10)	0.5 - 0.6	<u>0.5</u>		
4	20		<u>150_</u> (cycles 1-9)	0.5 - 0.6	<u>0.5</u>		
4	<u>26</u>	56 ± 2 (35 ± 1)	<u>300</u> (cycle 10)*	NA	<u>0.68</u>		

* The steering wheel angle used for cycle 10 should be twice the angle used for cycles 1-9

Remarks:

RECORDED BY:P BroenDATE RECORDED:7/20/2011APPROVED BY:B KebschullDATE APPROVED:7/20/2011

Data Sheet 7 (Page 1 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Vehicle: 2011 Mercedes-Benz Sprinter

NHTSA No. <u>CB0515</u>

Measured tire pressure:	LF	352	kPa	RF	<u>353</u>	kPa
	LR	<u>513</u>	kPa	RR	<u>509</u>	kPa

Wind Speed 2.9 m/s

(10 m/sec (22 mph) max for passenger cars; 5 m/sec (11 mph) max for MPVs and trucks)

Ambient Temperature (7°C (45°F) - 40°C (104°F)) 31 °C

Selected drive configuration <u>*RWD*</u>

Selected Mode: Default- ESC on

Preliminary Left Steer Maneuver:

Lateral Acceleration measured at 30 degrees steering wheel angle

 $a_{y,30 degrees} = 0.26$ g

Assuming a linear relationship the following ratio should be used to calculate the steering wheel angle at 0.55g:

$$\frac{30 \text{ degrees}}{a_{y,30 \text{ degrees}}} = \frac{\delta_{SIS}}{0.55 \text{ g}} \qquad \qquad \delta_{sis} = \underline{63.5} \text{ degrees (@.55g)} \\ \delta_{sis} = \underline{60} \text{ degrees (rounded)}$$

Steering Wheel Angle at Corrected 0.3g Lateral Acceleration:

		Time Clock	Steering Wheel Angle		
	Initial Steer	(5 min max	to nearest	Data	
Maneuver	Direction	between runs)	0.1° (degrees)	Run	Good/NG
1	Left	<u>1:01 pm</u>	<u>-37.7</u>	<u>11</u>	<u>Good</u>
2	Left	<u>1:07 pm</u>	<u>-37.2</u>	<u>12</u>	<u>Good</u>
3	Left	<u>1:09 pm</u>	<u>-37.0</u>	<u>13</u>	<u>Good</u>
4	Left				
5	Left				
1	Right	<u>1:12 pm</u>	<u>34.0</u>	<u>14</u>	<u>Good</u>
2	Right	<u>1:15 pm</u>		<u>15</u>	<u>NG</u>
3	Right	<u>1:19 pm</u>	<u>34.0</u>	<u>16</u>	<u>Good</u>
4	Right	<u>1:23 pm</u>	<u>33.7</u>	<u>17</u>	<u>Good</u>
5	Right				

Data Sheet 7 (Page 2 of 2) SLOWLY INCREASING STEER (SIS) MANEUVER

Average Overall Steering Wheel Angle:

 $\delta_{0.3 \ g, \ overall} = \left(\left| \delta_{0.3 \ g, \ left \ (1)} \right| + \left| \delta_{0.3 \ g, \ left \ (2)} \right| + \left| \delta_{0.3 \ g, \ left \ (3)} \right| + \delta_{0.3 \ g, \ right \ (1)} + \delta_{0.3 \ g, \ right \ (2)} + \delta_{0.3 \ g, \ right \ (3)} \right) / 6$

 $\delta_{0.3 g, overall} = 35.6$ degrees

[to nearest 0.1 degree]

Remarks:

RECORDED BY:	P Broen	DATE RECORDED:	7/20/2011
APPROVED BY:	B Kebschull	DATE APPROVED:	7/20/2011

Data Sheet 8 (Page 1 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Vehicle: 2011 Mercedes-Benz Sprinter

NHTSA No. <u>CB0515</u>	Data sheet comple	tion date: 7	/20/2011
Tire conditioning completed		X Yes	No
ESC system is enabled		X Yes	No
On track calibration checks have	been completed	X Yes	No
On track static data file for each	sensor obtained	X Yes	No
Selected Drive Configuration:	RWD		
Selected Mode: Default, ESC	on		
Overall steering wheel angle ($\delta_{0.3}$	g, overall) <u>35.6</u> d	egrees	

Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction

		Comm	anded		Yaw Rate	S	Y	′RR	Ň	/RR
	Clock	Steering Wheel		(degrees/sec)			at 1.0 sec after		at 1.75 sec after	
Maneuver	Time	Ang	le ¹				С	OS	(COS
#			,				[<	35%]	[<	20%]
	(1.5 – 5.0 min max between runs)	Scalar (* δ _{0.3 g})	Angle (degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{1.75 m sec}$	0/2	Pass/Fail	%	Pass/Fail
28	15:21	1.5	53	12.85	-0.16	-0.02	-1.23	PASS	-0.16	PASS
29	15:25	2.0	71	16.62	0.18	0.29	1.07	PASS	1.74	PASS
30	15:28	2.5	89	19.42	0.15	0.19	0.77	PASS	0.97	PASS
31	15:32	3.0	107	21.25	-0.14	-0.17	-0.66	PASS	-0.82	PASS
32	15:34	3.5	125	21.17	0.06	0.07	0.29	PASS	0.33	PASS
33	15:38	4.0	142	22.68	-0.15	-0.16	-0.67	PASS	-0.70	PASS
34	15:41	4.5	160	25.09	0.16	0.09	0.62	PASS	0.37	PASS
35	15:43	5.0	178	25.58	-0.15	-0.19	-0.57	PASS	-0.76	PASS
36	15:46	5.5	196	29.18	0.11	0.08	0.38	PASS	0.26	PASS
37	15:48	6.0	214	31.29	-0.12	-0.16	-0.37	PASS	-0.50	PASS
38	15:51	6.5	231	30.95	-0.07	-0.09	-0.24	PASS	-0.30	PASS
39	15:55	7.0	249	32.15	-0.05	-0.02	-0.15	PASS	-0.07	PASS
40	15:57	7.5	267	31.50	-0.06	-0.05	-0.18	PASS	-0.17	PASS
41	16:00	-	270	31.75	-0.24	-0.12	-0.74	PASS	-0.38	PASS

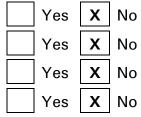
Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5 *δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated magnitude of 6.5 *δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5 *δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5 *δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

LAT	ERAL ST	ABILITY	TEST SE	RIES NO	. 2 – Cl	ockwise	Initial S	teer Direc	tion	
Maneuver #	Clock Time	Steering	ommandedYaw RatesYRRbering Wheel(degrees/sec)at 1.0 sec afterAngle1COS[< 35%]				c) at 1.0 sec after at 1.75 sec af COS COS		sec after COS	
	(1.5 – 5.0 min max between runs)	Scalar (* δ _{0.3 g})	Angle (degrees)	$\dot{\psi}_{\scriptscriptstyle Peak}$	$\dot{\psi}_{1.0 m sec}$	$\dot{\psi}_{1.75 m sec}$	%	Pass/Fail	%	Pass/Fail
42	16:04	1.5	53	-12.64	0.01	-0.04	-0.09	PASS	0.34	PASS
43	16:07	2.0	71	-16.32	-0.03	0.01	0.21	PASS	-0.08	PASS
44	16:09	2.5	89	-19.68	-0.05	0.00	0.27	PASS	0.02	PASS
45 ²	16:12	3.0	107	-22.00	-0.11	-0.15	0.49	PASS	0.70	PASS
47	16:18	3.5	125	-21.97	-0.11	-0.21	0.49	PASS	0.95	PASS
48	16:22	4.0	142	-24.34	-0.07	-0.14	0.30	PASS	0.57	PASS
49	16:25	4.5	160	-25.04	0.00	-0.12	0.00	PASS	0.49	PASS
50	16:27	5.0	178	-28.18	-0.24	-0.29	0.84	PASS	1.03	PASS
51	16:30	5.5	196	-30.89	-0.10	0.07	0.31	PASS	-0.21	PASS
52	16:33	6.0	214	-32.18	-0.05	-0.01	0.15	PASS	0.02	PASS
53	16:35	6.5	231	-31.82	-0.14	-0.12	0.43	PASS	0.39	PASS
54	16:38	7.0	249	-33.70	-0.06	-0.15	0.17	PASS	0.44	PASS
55	16:40	7.5	267	-33.47	0.02	0.01	-0.07	PASS	-0.04	PASS
56	16:44	-	270	-31.76	0.13	0.05	-0.42	PASS	-0.15	PASS

DATA SHEET 8 (2 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Maneuver execution should continue until a steering wheel angle magnitude factor of 6.5*δ_{0.3 g}, overall or 270 degrees is utilized, whichever is greater provided the calculated 6.5*δ_{0.3 g}, overall is less than or equal to 300 degrees. If 6.5*δ_{0.3 g}, overall is less than 270 degrees maneuver execution should continue by increasing the steering wheel angle magnitude by multiples of 0.5*δ_{0.3 g}, overall without exceeding the 270 degree steering wheel angle.

2. Run 46 was no good; this was the reason why the time interval was greater than 5 minutes between runs 45 and 46.


During execution of the Sine with Dwell maneuvers were any of the following events observed?

Rim-to-pavement contact

Tire debeading

Loss of pavement contact of vehicle tires

Did the test driver experience any vehicle loss of control or spinout?

If "Yes" explain the event and consult with the COTR.

DATA SHEET 8 (3 of 3) VEHICLE LATERAL STABILITY AND RESPONSIVENESS

Responsiver	ness – Lateral Disp	lacement			
Managura	Initial Stoor	Commanded S Ang	gle	Calculated Lateral Displacement ¹	
#	Maneuver Initial Steer # Direction		or greater) Angle (degrees)	Distance (m)	Pass/Fail
35	Counter Clockwise	5.0	178	-2.5	PASS
36	Counter Clockwise	5.5	196	-2.6	PASS
37	Counter Clockwise	6.0	214	-2.7	PASS
38	Counter Clockwise	6.5	231	-2.7	PASS
39	Counter Clockwise	7.0	249	-2.7	PASS
40	Counter Clockwise	7.5	267	-2.6	PASS
41	Counter Clockwise	8.0	270	-2.8	PASS
50	Clockwise	5.0	178	2.4	PASS
51	Clockwise	5.5	196	2.4	PASS
52	Clockwise	6.0	214	2.5	PASS
53	Clockwise	6.5	231	2.6	PASS
54	Clockwise	7.0	249	2.6	PASS
55	Clockwise	7.5	267	2.6	PASS
56	Clockwise	8.0	270	2.5	PASS

1. Lateral displacement should be \geq 1.83 m (6 ft) for vehicle with a GVWR of 3,500 kg (7,716 lb) or less; and \geq 1.52 m (5 ft) for vehicles with GVWR greater than 3,500 kg (7,716 lb).

DATA INDICATES COMPLIANCE:

Remarks:

RECORDED BY:P BroenDATE RECORDED:7/20/2011APPROVED BY:B KebschullDATE APPROVED:7/20/2011

Data Sheet 9 (Page 1 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2011 Mercedes-Benz Sprinter

NHTSA No. *CB0515*

Data Sheet Completion Date: 7/20/2011

TEST 1

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnect stop lamp switch at connector

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

Fail

X Pass

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes)

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 \pm 8 km/h (30 \pm 5 mph) is reached.

0 Seconds (must be within 2 minutes) X Pass Fail

TEST 1 DATA INDICATES COMPLIANCE: PASS

Remarks:Telltale illuminated immediately upon ignition after malfunction was
caused.caused.The "acceleration skid control" (ASR) telltale also illuminated.billtales extinguished immediately upon ignition after the malfunction was
removed (brake light reconnected).No driving was necessary.RECORDED BY:B KebschullDATE RECORDED:7/20/2011

APPROVED BY: *P Broen* DATE APPROVED 7/20/2011

Data Sheet 9 (Page 2 of 2) MALFUNCTION WARNING TESTS

Vehicle: 2011 Mercedes-Benz Sprinter

NHTSA No*. CB0515*

Data Sheet Completion Date: 7/20/2011

TEST 2

MALFUNCTION SIMULATION: Describe method of malfunction simulation

Disconnect rear speed sensor at connector

MALFUNCTION TELLTALE ILLUMINATION:

Telltale illuminates and remains illuminated after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

Fail

Fail

X Pass

X Pass

Time for telltale to illuminate after ignition system is activated and vehicle speed of 48 ± 8 km/h (30 ± 5 mph) is reached.

0 Seconds (must be within 2 minutes)

ESC SYSTEM RESTORATION

Telltale extinguishes after ignition locking system is activated and if necessary the vehicle is driven at least 2 minutes.

X Yes No

Time for telltale to extinguish after ignition system is activated and vehicle speed of 48 \pm 8 km/h (30 \pm 5 mph) is reached.

0 Seconds (must be within 2 minutes)

TEST 2 DATA INDICATES COMPLIANCE: PASS

Remarks: Telltale illuminated immediately upon ignition after malfunction was caused. The "acceleration skid control" (ASR) and ABS telltales also illuminated. All telltales extinguished immediately upon ignition after the malfunction was removed (rear wheel speed sensor reconnected). No driving was necessary.

RECORDED BY: <u>B Kebschull</u>	DATE RECORDED: <u>7/20/2011</u>
APPROVED BY: P Broen	DATE APPROVED 7/20/2011

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (1 OF 2)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Tire Pressure Gauge	Vehicle Tire Pressure	0-100 psi 0-690 kPa	1 psi 6.89 kPa	0.5 psi 3.45 kPa	Ashcroft D1005PS	1039350	By: DRI Date:2/22/11 Due: 2/22/12
Platform Scales	Vehicle Total, Wheel, and Axle Load	8000 lb 35.6 kN	0.5 lb 2.2 N	±1.0% of applied load	Intercomp Model SWII	24032361	By: DRI Date: 2/23/11 Due: 2/23/12
Automated Steering Machine with Steering Angle Encoder	Handwheel Angle	±800 deg	0.25 deg	± 0.25 deg	Heitz Automotive Testing Model: Sprint 3	60304	By: DRI Date: 3/30/11 Due: 3/30/12
Multi-Axis Inertial Sensing System	Longitudinal, Lateral, and Vertical Acceleration Roll, Yaw, and Pitch Rate	Accelerometer s: ±2 g Angular Rate Sensors: ±100 deg/s	Accelerometers: ≤10 ug Angular Rate Sensors: ≤0.004 deg/s	Acceleromete rs: ≤0.05% of full range Angular Rate Sensors: 0.05% of full range	BEI Technologies Model: MotionPAK MP-1	0767	By: Systron Donner Date: 3/8/11 Due: 3/8/12
Radar Speed Sensor and Dashboard Display	Vehicle Speed	0-125 mph 0-200 km/h	0.009 mph .014 km/h	±0.25% of full scale	A-DAT Corp. Radar Model: DRS- 6 Display Model: RD- 2	1400.604	By: DRI Date: 5/3/11 Due: 5/3/12
Ultrasonic Distance	Left and Right Side	5-24 inches	0.01 inches	±0.25% of maximum	Massa Products Corporation	DOT-NHTSA D2646	By: DRI Date: 2/22/11 Due: 2/21/12
Measuring System	Vehicle Height	127-610 mm	.254 mm	distance	Model: M- 5000/220	DOT-NHTSA D3272	By: DRI Date: 2/22/11 Due: 2/22/12

TABLE 1. TEST INSTRUMENTATION

4.0 TEST EQUIPMENT LIST AND CALIBRATION INFORMATION (2 OF 2)

Туре	Output	Range	Resolution	Accuracy	Specifics	Serial Number	Calibration
Data Acquisition System [Includes amplification, anti-	Record Time; Velocity; Distance; Lateral, Longitudinal, and Vertical	Sufficient to meet or exceed		Sufficient to meet or exceed	SoMat eDaq ECPU processor	MSHLB.03- 2476	By: DRI Date: 3/29/11 Due: 3/29/12
aliasing, and analog to digital conversion.]	Accelerations; Roll, Yaw, and Pitch Rates; Steering Wheel Angle.	individual sensors	200 Hz	individual sensors	SoMat High level Board EHLS	MSHLS.03- 3182	By: DRI Date: 3/29/11 Due: 3/29/12
Load Cell	Vehicle Brake Pedal Force	0-300 lb 0-1.33 kN	1 lb 4.44 N	±0.05% of full scale	Lebow 3663-300	767	Operationally verified by DRI prior to test
Coordinate Measurement Machine	Inertial Sensing System Coordinates	0-8 ft 0-2.4 m	±.0020 in. ±.051 mm	±.0020 in. ±.051 mm (Single point articulation accuracy)	Faro Arm Fusion	UO8-05-08- 06636	By; DRI Date: 11/7/10 Due: 11/7/11
Outriggers	No output. Safety Item.	NA	NA	NA	DRI manufactured Aluminum meeting the weight and MOI specifications of Docket 2007- 27662-11	NA	NA

TABLE 1. TEST INSTRUMENTATION (CONTD)

5.0 PHOTOGRAPHS (1 of 13)

Figure 5.1. Front View of Test Vehicle

5.0 PHOTOGRAPHS (2 of 13)

Figure 5.2. Rear View of Test Vehicle

5.0 PHOTOGRAPHS (3 of 13)

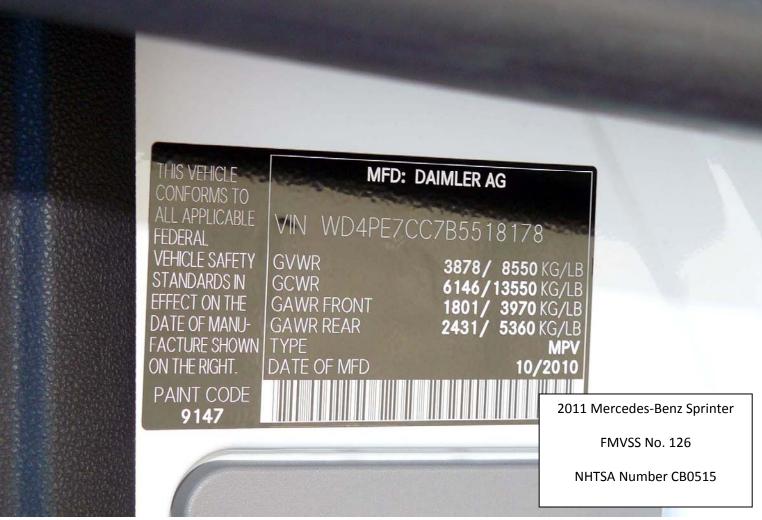


Figure 5.3. Vehicle Certification Label

5.0 PHOTOGRAPHS (4 of 13)

	TIRE AND	LOADING	INFORMA	ATION E CHARGEMEI	NT
	SEATING CAPACITY	TOTAL 2	FRONT AVANT	2 REAR ARRIÈRE	0
The combined we	eight of occupants and ca occupants et du chargeme	rgo should never e nt ne doit jamais dé	exceed 15	ky ou	IU.
TIRE PNEU	SIZE DIMENSIONS	COLD TIRE PRI PRESSION DES PNE	ESSURE	SEE OWNER'S MANUAL FOR ADDITIONAL	
FRONT	LT245/75R16	320kPa,	47ps1		88
REAR ARRIÈRE	LT245/75R16	480kPa,	70ps1	VOIR LE MANUE DE L'USAGER	584 66 584 66
SPARE DE SECOURS	LT245/75R16	480kPa,	70ps1	POUR PLUS DE REI 2011 Merce	edes-Benz Sprin
	and the second se			FMV	'SS No. 126

Figure 5.4. Vehicle Placard

5.0 PHOTOGRAPHS (5 of 13)

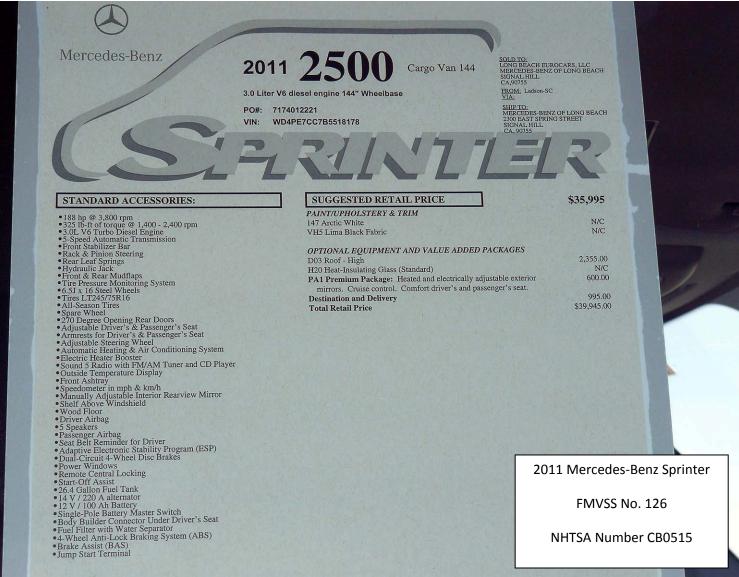


Figure 5.5. Window Sticker (Monroney Label)

5.0 PHOTOGRAPHS (6 of 13)

Figure 5.6. Front View of Vehicle as Tested

5.0 PHOTOGRAPHS (7 of 13)

Figure 5.7. Rear View of Vehicle as Tested

5.0 PHOTOGRAPHS (8 of 13)

Figure 5.8. Ultrasonic Height Sensor Mounted on Side of Vehicle for Determining Body Roll Angle

5.0 PHOTOGRAPHS (9 of 13)



Figure 5.9. Rear Mounted Speed Sensor

5.0 PHOTOGRAPHS (10 of 13)

Figure 5.10. Steering Controller and Data Acquisition Computer

5.0 PHOTOGRAPHS (11 of 13)

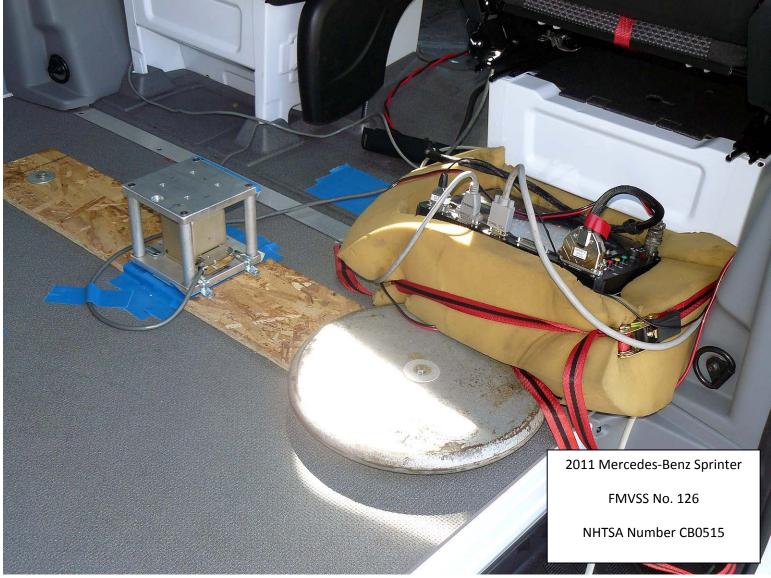


Figure 5.11. Inertial Measurement Unit Mounted in Vehicle

5.0 PHOTOGRAPHS (12 of 13)

Figure 5.12. Brake Pedal Load Cell

5.0 PHOTOGRAPHS (13 of 13)

Figure 5.13. Telltale for ESC Malfunction and Activation

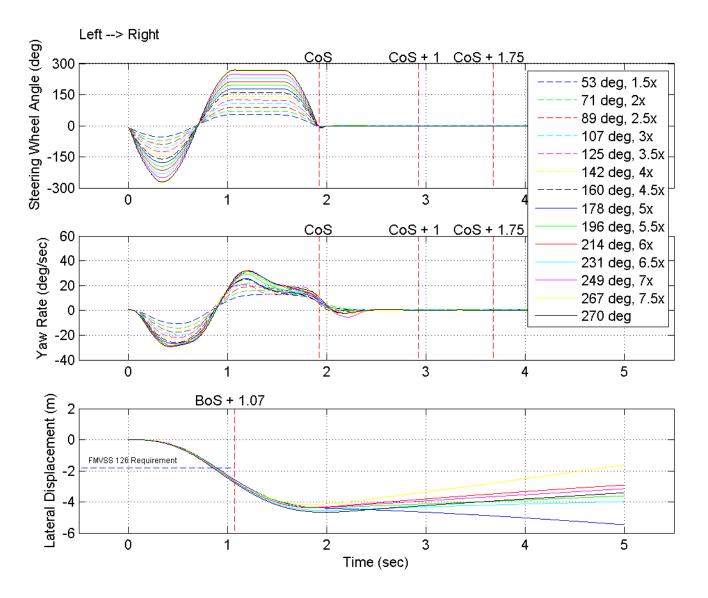


Figure 6.1. Steering Wheel Angle, Yaw Rate and Lateral Displacement for L-R Series

Figure 6.2. Steering Wheel Angle, Yaw Rate and Lateral Displacement for R-L Series

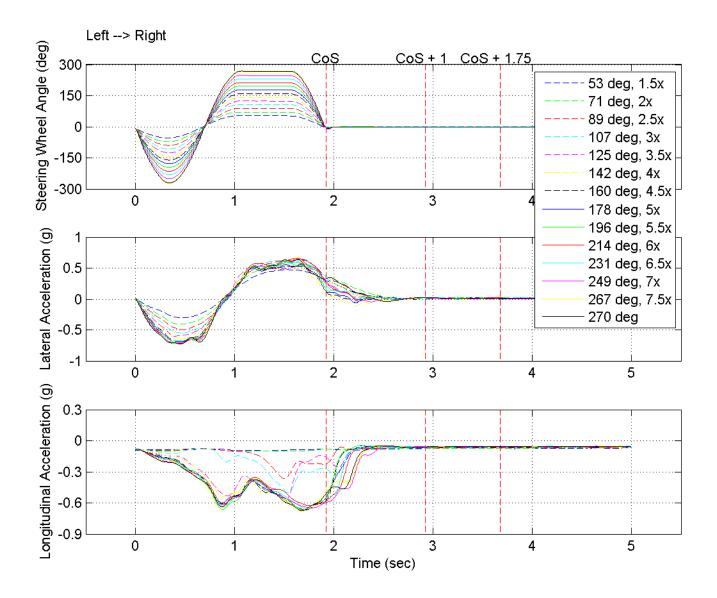


Figure 6.3. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for L-R Series

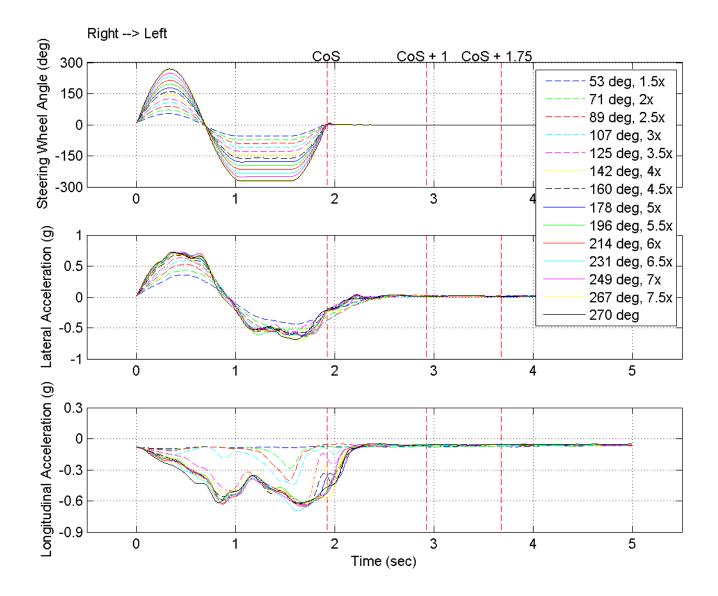


Figure 6.4. Steering Wheel Angle, Lateral Acceleration and Longitudinal Acceleration for R-L Series

7.0 OTHER DOCUMENTATION

- 7.1 OWNER'S MANUAL PAGES
- 7.2 VEHICLE ARRIVAL CONDITION REPORT
- 7.3 VEHICLE COMPLETION CONDITION REPORT
- 7.4 SINE WITH DWELL TEST RESULTS
- 7.5 SLOWLY INCREASING STEER TEST RESULTS
- 7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Driving safety systems 48

serves as a reminder to take extra care while driving.

- ▶ If ABS intervenes: continue to depress the brake pedal with force until the braking situation is over.
- Safety ► To make a full brake application:

depress the brake pedal with full force.

∧ Warning

If the ABS malfunctions, other driving systems such as the BAS or the ESP® are also switched off. Observe indicator and warning lamps that may come on as well as messages in the multifunction display that may appear.

If the ABS malfunctions, the wheels may lock during hard braking, reducing the steering capability and extending the braking distance.

BAS (Brake Assist System)

∧ Warning

Observe "Important safety notes" (⊳ page 47).

BAS operates in emergency braking situations. If you depress the brake pedal quickly, BAS automatically boosts the braking force, potentially reducing the stopping distance.

Keep the brake pedal firmly depressed until the emergency braking situation is over. ABS prevents the wheels from locking.

The brakes will function as usual once you release the brake pedal. BAS is deactivated.

∧ Warning

If the BAS malfunctions, the brake system still functions, but without the additional brake boost available that the BAS would normally provide in an emergency braking maneuver. Therefore, the braking distance may increase.

EBD (Electronic Brake force **Distribution**)

▲ Warning

Observe "Important safety notes" (⊳ page 47).

EBD monitors and controls the brake pressure on the rear wheels to improve driving stability while braking.

∧ Warning

If the 🚊, 🕘 , 🔘 and 🚥 indicator lamps light up while the vehicle is in motion, EBD may be defective.

If EBD malfunctions, the brake system will still function with full brake boost. However, the rear wheels could lock up during emergency braking situations, for example. You could lose control of the vehicle and cause an accident.

Adapt your driving style to the changed driving characteristics.

ASR (acceleration skid control)

Important safety notes

∧ Warning

Observe "Important safety notes" (⊳ page 47).

ASR can significantly improve traction, i.e. the transmission of power from the tires to the road surface, and thus may increase the vehicle's driving stability. ASR assists in pulling away and accelerating, particularly on smooth and slippery surfaces.

ASR can brake individual wheels and limits the engine torque to help prevent the drive wheels from spinning.

If ASR intervenes, the A warning lamp flashes in the instrument cluster.

50 Driving safety systems

ESP[®] (Electronic Stability Program)

∧ Warning

Safety

Observe "Important safety notes" (▷ page 47).

If ESP[®] detects that the vehicle is deviating from the direction desired by the driver, one or more wheels are braked to help stabilize the vehicle. If necessary, the engine output is also modified to help keep the vehicle on the desired course within physical limits. ESP[®] assists the driver when pulling away on wet or slippery roads. ESP[®] can also help stabilize the vehicle during braking.

If ESP^\circledast intervenes, the \fbox warning lamp flashes in the instrument cluster.

▲ Warning

If the 👮 indicator lamp remains lit, ESP[®] is not available due to a malfunction. Vehicle stability in standard driving maneuvers is reduced.

Adapt your speed and driving style to the prevailing road conditions and to the non-operating status of ESP[®].

If ESP[®] is malfunctioning, the engine output may be reduced.

Only operate the vehicle for a maximum of ten seconds on a brake test dynamometer. Switch off the ignition. Application of the brakes by ESP[®] may otherwise destroy the brake system.

Do not operate the vehicle on a dynamometer (e.g. for a performance test). If you would like to operate the vehicle on a dynamometer, consult an authorized Sprinter Dealer beforehand. The drive train or brake system could otherwise be damaged.

 Only use wheels with the recommended tire sizes. Only then will ESP[®] function properly.

190 Troubleshooting

	Probl	em	Possible causes/consequences and ► Solutions
		The yellow ABS indicator lamp is lit while the engine is running.	 Warning! ABS has been deactivated due to undervoltage. It is possible that the battery is not being charged. The brake system continues to function normally, but without electronic support. The wheels could therefore lock, e.g. if the brakes are applied with maximum force. Drive on with care. Visit a qualified specialist workshop immediately.
Practical advice	<u></u>	The yellow DEF indicator lamp lights up while the engine is running.	 The exhaust gas aftertreatment is malfunctioning or the current Diesel Exhaust Fluid (DEF) supply is limiting the vehicle range. ▶ Observe the messages in the display (▷ page 199).
Practic	ß	The yellow ESP [®] warning lamp is lit while the engine is running.	 ✓ Warning! ESP[®] has been deactivated due to a malfunction. This also deactivates cruise control. The vehicle's stability is no longer automatically regulated at an early stage. Engine power output may be reduced. On vehicles with steering wheel buttons, also observe the messages in the display (▷ page 197). Drive on with care. Consult a qualified specialist workshop as soon as possible.
	8	The yellow ESP [®] warning lamp is lit while the engine is running.	 Warning! ESP[®] has been deactivated due to undervoltage. This also deactivates cruise control. It is possible that the battery is not being charged. The vehicle's stability is no longer automatically regulated at an early stage. Engine power output may be reduced. Drive on with care. Consult a qualified specialist workshop as soon as possible.

202 Troubleshooting

	Display messages	Possible causes/consequences and ► Solutions
	ABS Unavailable	 Warning! ABS has been deactivated due to undervoltage. The battery might not be charging. The brake system is still available with the normal braking effect. Drive on carefully. Visit a qualified specialist workshop immediately.
Practical advice	Check Diesel Exhaust Fluid see Operator's Manual	 The Diesel Exhaust Fluid (DEF) supply has dropped below 1.5 US gal (5.5 l). After the message appears for the first time and under normal driving conditions, the remaining DEF supply will last for approximately 1000 miles (1600 km). After that, the 0.8 US gal (3.0 l) reserve mark is reached. A warning tone sequence sounds. The engine can then only be started another sixteen times. add DEF supply (▷ page 143). After topping up, the system check takes approximately 20 seconds. The display message then disappears.
	Check Diesel Exhaust Fluid see Operator's Manual	If the yellow 🔁 engine diagnosis indicator lamp lights up in addition, the DEF reducing agent is contaminated, diluted or not compliant with ISO 22241. After the message appears for the first time, and under normal driving conditions, you can continue driving for approximately 50 miles(80 km). After this, a warning tone sequence sounds. The engine can then only be started another sixteen times. Have the DEF tank cleaned and refilled at a qualified specialist workshop as soon as possible.
	ESP Visit workshop	 Warning! ESP® has been deactivated due to a malfunction. This also deactivates cruise control. The vehicle's stability is no longer automatically regulated at an early stage. Engine power output may be reduced. Drive on carefully. Visit a qualified specialist workshop immediately.

Troubleshooting 203

Possible causes/consequences and ► Solutions
 ESP[®] has been deactivated due to undervoltage. This also deactivates cruise control. The battery might not be charging. The vehicle's stability is no longer automatically regulated at an early stage. Engine power output may be reduced. Drive on carefully. Visit a qualified specialist workshop as soon as possible.
 The pressure in one or more tires is too low or there is a significant difference between tire pressures on individual wheels. ► Check the tire pressure at the next opportunity and correct it if necessary (▷ page 281).
 The tire pressure monitor has malfunctioned. Have the tire pressure monitor and the wheels checked at a qualified specialist workshop.
 The tire pressure monitor function is temporarily unavailable due to radio interference or undervoltage. ► As soon as the causes have been remedied, the tire pressure monitor activates itself automatically.
 The tire pressure monitor is not receiving signals from one or more wheels because: a wheel has been replaced with the spare wheel without wheel electronics. the maximum temperature on one of the wheel electronics units has been exceeded. the wheel electronics are malfunctioning. Have wheels with suitable wheel electronics units installed at a qualified specialist workshop.
Cruise control has been deactivated due to a malfunction. ► Have cruise control checked at a qualified specialist workshop.
 Warning! The restraint systems have malfunctioned. The air bags or belt tensioners could be triggered unintentionally or might not be triggered at all in the event of an accident. Drive on carefully. Visit a qualified specialist workshop as soon as possible.

7.2 VEHICLE ARRIVAL CONDITION REPORT

CONTRACT NO.: <u>DTNH22-08-D-00098</u> DATE: 6/28/2011

From:	Automotive Allies	Purpose	🗙 Initial Receipt
			Received via Transfer
To:	Dynamic Research, Inc		Present Vehicle Condition

Vehicle VIN: <u>WD4PE7CC7B551817</u>	NHTSA NO.:	CB0515
Model Year: <u>2011</u>	Odometer Reading:	<u>28</u> Miles
Make <u>Mercedes-Benz</u>	Body Style:	<u>MPV</u>
Model: <u>Sprinter</u>	Body Color:	White
Manufacture Date: <u>10/10</u>	Dealer:	Automotive Allies
GVWR (kg/lb) <u>3878/8550</u>	Price:	<u>Leased</u>

- X All options listed on the "Window Sticker" are present on the test vehicle
- X Tires and wheel rims are new and the same as listed
- X There are no dents or other interior or exterior flaws
- The vehicle has been properly prepared and is in running condition
- The glove box contains an owner's manual, warranty document, consumer information, and extra set of keys
- X Proper fuel filler cap is supplied on the test vehicle
- X Place vehicle in storage area
- ☑ Inspect the vehicle's interior and exterior, including all windows, seats, doors, etc., to confirm that each system is complete and functional per the manufacturer's specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test.
- NOTES: No owner's manual, requested from vehicle supplier

This is a cargo van.

RECORDED BY:	J.Lenkeit	DATE RECORDED:	6/28/2011
APPROVED BY:	B Kebschull	DATE APPROVED:	6/28/2011

7.3 VEHICLE COMPLETION CONDITION REPORT

CONTRACT NO.: DTNH22-08-D-00098 DATE: 7/29/2011

Vehicle VIN: <u>WD4PE7CC7B5518178</u>	NHTSA NO.: <u><i>CB0515</i></u>
Model Year: <u>2011</u>	Odometer Reading: <u>80</u> Miles
Make: <u>Mercedes-Benz</u>	Body Style: <u>MPV</u>
Model: <u>Sprinter</u>	Body Color: <u>White</u>
Manufacture Date: <u>10/10</u>	Dealer: Automotive Allies
GVWR (kg/lb) <u>3878 (8550)</u>	Price: Leased

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: 126

- ☑ THERE ARE NO DENTS OR OTHER INTERIOR OR EXTERIOR FLAWS
- ☑ THE VEHICLE HAS BEEN PROPERLY MAINTAINED AND IS IN RUNNING CONDITION
- ☑ THE GLOVE BOX CONTAINS AN OWNER'S MANUAL, WARRANTY DOCUMENT, CONSUMER INFORMATION, AND EXTRA SET OF KEYS

☑ PROPER FUEL FILLER CAP IS SUPPLIED ON THE TEST VEHICLE **REMARKS**:

Equipment that is no longer on the test vehicle as noted on Vehicle Arrival **Condition Report:**

Explanation for equipment removal:

Test Vehicle Condition:

As delivered, like new

RECORDED BY: J Lenkeit DATE RECORDED: 7/29/2011

APPROVED BY: *B Kebschull* DATE APPROVED: *8/1/2011*

7.4 SINE WITH DWELL TEST RESULTS

2011 Mercedes-Benz Sprinter NHTSA No.: <u>CB0515</u> Date of Test : <u>7/20/2011</u> Date Created: <u>7/20/2011</u>

Late	Lateral Stability Test Series No. 1 – Counterclockwise Initial Steer Direction																			
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
28	710	50.35	3.541	1090	5.444	847	4.226	-1.23	-0.16	1290	-0.16	-0.02	1440	12.85	998	-3.59	0.21	53.03	775	52.88
29	708	50.75	3.534	1090	5.444	846	4.225	1.07	0.18	1290	1.74	0.29	1440	16.62	986	-4.52	0.27	71.02	775	70.89
30	708	50.47	3.531	1090	5.444	846	4.225	0.77	0.15	1290	0.97	0.19	1440	19.42	958	-5.42	0.30	89.06	775	88.85
31	707	50.54	3.528	1090	5.444	846	4.225	-0.66	-0.14	1290	-0.82	-0.17	1440	21.25	951	-6.34	0.32	106.97	775	106.72
32	707	50.68	3.527	1090	5.445	846	4.224	0.29	0.06	1290	0.33	0.07	1440	21.17	937	-6.80	0.40	125.03	775	124.85
33	707	50.43	3.526	1090	5.445	846	4.225	-0.67	-0.15	1290	-0.70	-0.16	1440	22.68	941	-7.23	0.35	142.04	775	141.72
34	707	50.58	3.526	1090	5.444	846	4.225	0.62	0.16	1290	0.37	0.09	1440	25.09	945	-7.83	0.31	159.99	775	159.66
35	706	50.56	3.525	1090	5.444	846	4.225	-0.57	-0.15	1290	-0.76	-0.19	1440	25.58	944	-8.32	0.27	178.11	775	177.57
36	706	50.54	3.524	1090	5.443	846	4.225	0.38	0.11	1290	0.26	0.08	1440	29.18	946	-8.47	0.26	196.06	775	195.44
37	706	50.62	3.525	1090	5.443	846	4.225	-0.37	-0.12	1290	-0.50	-0.16	1440	31.29	952	-8.70	0.26	214.09	775	213.26
38	706	50.72	3.525	1090	5.443	846	4.225	-0.24	-0.07	1290	-0.30	-0.09	1440	30.95	948	-8.81	0.27	231.12	775	230.31
39	707	50.50	3.526	1090	5.444	847	4.226	-0.15	-0.05	1290	-0.07	-0.02	1440	32.15	950	-8.74	0.28	249.38	775	248.12
40	707	50.50	3.526	1091	5.450	847	4.227	-0.18	-0.06	1291	-0.17	-0.05	1441	31.50	945	-8.53	0.30	267.21	775	266.06
41	707	50.66	3.526	1091	5.447	847	4.227	-0.74	-0.24	1291	-0.38	-0.12	1441	31.75	947	-9.04	0.27	270.12	775	269.08

7.4 SINE WITH DWELL TEST RESULTS

2011 Mercedes-Benz Sprinter NHTSA No.: *CB0515* Date of Test : <u>7/20/2011</u> Date Created: <u>7/20/2011</u>

Late	eral St	ability	Test \$	Series	No. 2	– Clo	ockwise	e Initial	Steer	Direc	tion			-						
File	SWA @ 5deg Ct	MES	Time @ 5deg	cos	Time @ COS	MO S	Time @ MOS	YRR1	YR1	YRR 1 Ct	YRR 175	YR175	YRR17 5 Ct	2nd Yaw Peak	2nd Yaw Peak Ct	Lat Disp	Lat. Acc. 1.07 s	1st SWA Peak	1st SWA Peak Ct	2nd SWA Mean
	(deg)	(mph)	(s)		(s)		(sec)	(%)	(deg/s)		(%)	(deg/s)		(deg/s)		(ft)	(g)	(deg)		(deg)
42	709	50.49	3.540	1090	5.444	847	4.227	-0.09	0.01	1290	0.34	-0.04	1440	-12.64	1031	3.66	-0.18	53.92	775	53.56
43	708	50.66	3.534	1090	5.444	847	4.226	0.21	-0.03	1290	-0.08	0.01	1440	-16.32	978	4.67	-0.22	71.90	775	71.45
44	707	50.62	3.530	1090	5.443	847	4.226	0.27	-0.05	1290	0.02	0.00	1440	-19.68	962	5.52	-0.27	89.95	775	89.40
45	707	50.19	3.527	1090	5.443	847	4.226	0.49	-0.11	1290	0.70	-0.15	1440	-22.00	954	6.24	-0.29	107.78	775	107.22
47	706	50.52	3.525	1090	5.444	847	4.226	0.49	-0.11	1290	0.95	-0.21	1440	-21.97	942	6.67	-0.38	125.95	775	125.36
48	706	50.49	3.523	1090	5.442	846	4.225	0.30	-0.07	1290	0.57	-0.14	1440	-24.34	945	7.20	-0.37	142.87	775	142.27
49	706	50.51	3.522	1091	5.447	848	4.234	0.00	0.00	1291	0.49	-0.12	1441	-25.04	946	7.50	-0.30	161.80	776	159.20
50	706	50.69	3.523	1090	5.442	847	4.226	0.84	-0.24	1290	1.03	-0.29	1440	-28.18	947	7.88	-0.34	178.89	775	178.20
51	706	50.64	3.523	1090	5.441	847	4.226	0.31	-0.10	1290	-0.21	0.07	1440	-30.89	948	7.99	-0.34	196.74	775	196.12
52	706	50.53	3.523	1090	5.442	847	4.226	0.15	-0.05	1290	0.02	-0.01	1440	-32.18	952	8.25	-0.33	214.54	775	214.02
53	706	50.54	3.524	1090	5.442	847	4.227	0.43	-0.14	1290	0.39	-0.12	1440	-31.82	949	8.51	-0.31	231.51	775	231.01
54	706	50.57	3.524	1090	5.442	847	4.227	0.17	-0.06	1290	0.44	-0.15	1440	-33.70	948	8.54	-0.33	249.26	775	249.11
55	706	50.71	3.524	1091	5.449	848	4.235	-0.07	0.02	1291	-0.04	0.01	1441	-33.47	948	8.49	-0.34	267.38	777	266.46
56	706	50.76	3.524	1092	5.454	847	4.227	-0.42	0.13	1292	-0.15	0.05	1442	-31.76	942	8.21	-0.37	270.20	775	269.97

7.5 SLOWLY INCREASING STEER TEST RESULTS

2011 Mercedes-Benz Sprinter NHTSA No.: <u>CB0515</u> Date of Test: <u>7/20/2011</u> Date Created: <u>7/20/2011</u>

File	EventPt	DOS	MES (mph)	Mean SPD (mph)	AYcount_3	THETAENCF_3 (deg)	AYCG_CD2_3 (g)	r_squared	ZeroBegin	ZeroEnd
11	700	1	49.624	49.769	1265	-37.714	-0.294	0.996	500	700
12	700	1	49.704	49.719	1257	-37.217	-0.318	0.983	500	700
13	640	1	49.819	49.738	1254	-36.986	-0.294	0.995	440	640
14	731	0	49.817	49.856	1209	33.960	0.315	0.996	531	731
16	700	0	49.921	49.914	1207	33.975	0.289	0.995	500	700
17	700	0	49.908	49.816	1204	33.678	0.309	0.994	500	700
				Averages			0.000			

Averages

35.6

0.303

Scalars	Steering Angles
	(deg)
1.5	53
2.0	71
2.5	89
3.0	107
3.5	125
4.0	142
4.5	160
5.0	178

Scalars	Steering Angles
	(deg)
5.5	196
6.0	214
6.5	231
7.0	249
7.5	267
7.6	270

7.6 INERTIAL SENSING SYSTEM LOCATION COORDINATES

Vehicle:	2011	1 Merceo	des-Benz Sprinter	NHTSA No.:	CB0515
Wheelbase	: 1	44	Inches	Faro Arm S/N:	U08-05-08-06636
Measureme	ent da	ate:	7/20/2011	Certification date:	11/7/10

CMM Measurements

Coordinate system: SAE (X,Y,Z positive forward, to the right, and downward, respectively)

Origin defined at 48" point on lateral arm of measurement fixture, projected onto the ground plane

	Ref X	Ref Y	Ref Z
M_PLANE001_Ground_Plane	-	-	0.000
M_Line_Y_Axis	2.059		0.000
M_Point_48_Ref	0.000	0.000	-
M_CIRCLE001_I_Right_Rear_Wheel_Axle	-60.294	-10.117	-14.482
M_Point_IMU_right_side	18.681	-47.402	-28.896
M_Point_ROOF	-	-	-104.50
Motion Pak reference point taken from mid height of unit right side			
Motion Pak Width = 3.05" ==> 1/2 W = 1.525			
Motion_PAK_Location	18.681	-48.927	-28.896

Measurement Notes

1. The Faro arm is positioned just to the right of the vehicle, near the rear door.

2. A "centerline jig" is used in the Faro arm measurement. The jig consists of a long beam with a 4 ft lateral arm that is perpendicular to the beam. The jig is placed on the ground underneath the vehicle with the long beam positioned along the centerline of the vehicle, such that the lateral arm extends to the right, slightly forward of the left rear tire. The lateral arm has a marked indentation point which is located 48.00" from the edge of the centerline beam.

3. The Faro arm is used to make the following measurements:

- Three points on the ground, which establishes the ground plane.
- Two points along the lateral arm, and projected onto the ground plane. This establishes the y axis.
- One point at the 48 inch reference point on the lateral arm. This establishes the origin.
- Three points on the right rear wheel or wheel cover. The Faro arm then computes the center point of the wheel.

- One point to establish the height of the highest point on the roof of the vehicle.

Coordinate Measurements Calculated for S7D (Matlab Program)

Coordinate system: X,Y,Z positive rearward, to the right, and upward, respectively

Origin defined as follows: X axis: front axle, Y axis: vehicle centerline, Z axis: ground plane

	Ref X	Ref Y	Ref Z
Motion_PAK_Location in S7D (Matlab program) coordinate system	65.025	-0.927	28.896

Calculation Notes:

1. X axis value is the difference between the wheelbase and the calculated distance from the rear axle centerline to the IMU (the value must be positive and less than the wheelbase).

2. Y axis value is 48.00 (the Y axis offset of the measurement origin in the S7D coordinate system) plus the measured Y axis value (a negative value indicates the IMU is to the left of the vehicle centerline, and a positive value indicates it is to the right)

3. Z axis value is from the ground plane up to the center of the IMU (value must be positive).